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Abstract

Being able to communicate seamlessly across the entireog@eeof human languages is,
to me, an ultimately rewarding goal for an intelligent systeDespite great progress in
the eld of Statistical Machine Translation (SMT) over thagt two decades, translation
quality has not yet satis ed users; at the same time, SMTesysthave become increasing
complex with many different components built separatepdering it extremely dif cult
to make further advancement. Recently, Neural Machineslasion (NMT) emerges as
a promising solution to the problem of machine translatidhits core, NMT consists of
a single deep neural network with millions of neurons thatrdeto directly map source
sentences to target sentences. NMT is powerful becausantend-to-end deep-learning
framework that is signi cantly better than SMT in capturifang-range dependencies in
sentences and generalizing well to unseen texts.

This dissertation presents all of the essence of Neural Machranslation (NMT),
through which | discuss how | have pushed the limits of NMTkmg it applicable to a
wide variety of languages with state-of-the-art perforsgarMy contributions include ad-
dressing the rare word problem with copy mechanisms, impgahe attention mechanism
to better select local contexts in the source sentence,randlating at the character level
with a hybrid architecture. Towards the future of NMT, | diss how to utilize data from a
wide variety of tasks such as parsing, image caption gaonaratnd unsupervised learning
to improve translation; as well as how to compress NMT modaisnobile devices. |
conclude with how my work in uences subsequent researchedkas provide an in-depth
coverage on the existing research landscape, highliglengiat research directions, and
speculate on future elements needed to further advance NMT.
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Chapter 1
Introduction

The Babel shis small, yellow, leech-like, and probably tddest
thing in the universe. If you stick a Babel sh in your ear, yoan
instantly understand anything in any form of language.

The Hitchhiker's Guide to the Galaxjpouglas Adams.

Human languages are diverse with about 6000 to 7000 langugmken worldwide
(Anderson, 2010). As civilization advances, the need fandess communication and un-
derstanding across languages becomes more and more cMailine translation (MT),
the task of teaching machines to learn to translate autoaigtiacross languages, as a re-
sult, is an important research area. MT has a long historyoftins, 200i7) from the original
philosophical ideas of universal languages in 1ff& century to the rst practical sugges-
tions in the 1950s, most notably an in uential proposal byawér (1949) which marked
the beginnings of MT research in the United States. In thaharandum, Warren Weaver
touched on the idea of using computers to translate, spaty @addressing the language
ambiguity problem by combining his knowledge of statistics/ptography, information
theory, as well as logical and linguistic universals (Huteh 2000). Since then, MT has
gone through many periods of great development but alsoustered several stagnant
phases as illustrated in Figure]l.1. Despite several maoérixcitement that led to hopes
that MT will be solved “very soon”, such as the 701 transl¢&heridan,, 1955) developed
by scientists at Georgetown and IBM in the 1950s and the pogibogle Translate at the
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beginning of the21% century (Brants et al., 2007), MT remains an extremely engling
problem (Kelly, 2014;; David, 2016). This motivates my wonkhe area of machine trans-
lation; speci cally, in this thesis, the goal is to advan@ural machine translation (NMT),
a new promising approach for MT developed just recentlyy ¢the past two years. The
results achieved in this thesis on NMT together with worknfrother researchers have
eventually produced a signi cant leap in the translatioalgy as illustrated in Figure_11.1.
Before delving into details of the thesis, we now walk thedexathrough the background
and a bit of the development history of machine translation.
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Figure 1.1:Machine translation progress— from the 1950s, the starting of modern MT
research, until the time of this thesis, 2016, in which neNf& becomes a dominant ap-
proach. Image courtesy of Christopher D. Manning.

1.1 Machine Translation

Despite much enthusiasm, the beginning period of MT rekearache 1950-60s, was
mostly about direct word-for-word replacement based omdpiial dictionarieg. An MT
winter quickly came right after the ALPAC report in 1966 pioig out that “there is no

1There are also proposals for “interlingual” and “transfapproaches but these seemed to be too chal-
lenging to achieve, not to mention limitations in hardwarthat time(Hutchins, 2007).
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Parallel Corpus She loves cute cats

She loves cats Elle aime les chats l
She loves him Elle I'aime
. » MT System
He adores cute cats Il adore les chats mignons
He has a cat Il @ un chat l
?

Figure 1.2:Corpus-based approaches to machine translatior a general setup in which
MT systems are built from parallel corpora of sentence pa@ngng the same meaning.
Once built, systems are used to translate new unseen sesteng., “She loves cute cats”.

immediate or predictable prospect of useful machine tediosi”, which hampered MT
research for over a decade. Fast-forwarding through thegesce in the 1980s begin-
ning with Europe, Japan, and gradually the United Stateslemmostatistical MT started
out with a seminal work by IBM scientists (Brown et al., 1993)he proposeaorpus-
basedapproaches require minimal linguistic content and onlydnaearallel dataset of
sentence pairs which are translations of one another,itoNta systems. Such a language-
independent setup is illustrated in Figlrel1.2. In moreifjatestead of hand building
bilingual dictionaries which can be costly to obtain, Broamd colleagues proposed to
learn these dictionaries, tnanslation modelsprobabilistically from parallel corpora. To
accomplish this, they propose a series of 5 algorithms okaming complexity, often re-
ferred as IBM Models 1-5, to leanvord alignmenta mapping between source and target
words in a parallel corpus, as illustrated in Figure 1.3. ithea is simple: the more often
two words, e.g., “loves” and “aime”, occur together in difat sentence pairs, the more
likely they are aligned to each other and have equivalenninga.

| She | [ loves | | cats |

| Elle | |aime|| les || chats |

Figure 1.3:Word-based alignment— example of an alignment between source and target
words. In IBM alignment models, each target word is aligredttmost one source word.
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Once a translation model, i.e., a probabilistic bilinguaiidnary, has been learned,
IBM model 1, the simplest and the most na’'ve one among thepngosed algorithms,
translates a new source sentence as follows. First, it de@d how long the translation
is as well as how source words will be mapped to target wordduasrated in Step 1 of
Figure[1.4. Then, in Step 2, it produces a translation byctalg for each target position a
word that is the best translation for the aligned source vacabrding to the bilingual dic-
tionary. Subsequent IBM models build on top of one anothdmrame the translation story
such as better modeling the reordering structure, i.e., wovd positions differ between
source and target languages. | refer the audience to thimalri@M paper or Chapter 25
of (Jurafsky and Martin, 2009) for more details.

| She | | Ioves| | cute | | cats |

Step 1: choose
length & alignment

| She | | Ioves| | cute | | cats |

Step 2: choose
target words

| Elle | |aime| |chats || mignons |

Figure 1.4:A simple translation story — example of the generative story in IBM Model 1
to produce a target translation given a source sentence laadned translation model.

There are, however, two important details that we left otgh@&above translation story,
the searchprocess and thlanguage modelingomponent. In Step 1, one might wonder
among the exponentially many choices, how do we know whaighétranslation length is
and how source words should be mapped to target words? Thahgeacedure informally
helps us “browse” through a manageable set of candidateshvare likely to include a
good translation; whereas, the language model will helglecsthe best translation among
these candidates. | will defer details of the search protekder since it depends on the
exact translation model being used. Language modelindye@ather hand, is an important
concept which has been studied earlier in speech recogritiatz, 1987). In a nutshell,
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a language model (LM) learns from a corpus of monolingual texthe target language
and collect statistics on which sequence of words are liteelyo with one another. When
applied to machine translation, an LM will assign high ssdi@ coherent and natural-
sounding translations and low scores for bad ones. For ampbe in the above gure,

if the model happens to choose a wrong alignment, e.g., “@gdes to position 3 while

“cats” goes to positions 4 and 5, an LM will alert us with a leveeore given to that
incorrect translation “Elle aime mignons les chats” coneglaio the translation “Elle aime
les chats mignons” with a correct word ordering strucﬁjre.

While the IBM work had a huge impact on the eld of statistiddIl, researchers
quickly realized that word-based MT is insuf cient as wonegsgjuire context to properly
translate, e.g., “bank” has two totally different meaningeen preceded by “ nancial” and
“river”. As a result,phrase-based modelMarcu and Wong, 2002; Koehn et al., 2003), in-
ter alia, became the de facto standard in MT research andlatieesdominant approach in
existing commercial systems until recelﬁlwuch credit went to Och's work oalignment
templatesstarting with his thesis in 1998 and lateriin (Och and Ne®®@004). The idea
of alignment templates is to enable phrase-based MT by ylstnaetrizin& the alignment
to obtain many-to-many correspondences between sourdas@ed words; in contrast, the
original IBM models only produce one-to-many alignmentrf the symmetrized align-
ment, several heuristics have been proposed to extracigpears; the general idea is that
phrase pairs need to be “consistent” with their alignmeatseh word in a phrase should
not be aligned to a word outside of the other phrase. Thesge @@ stored in what called a

2 For completeness, translation and language models agrameel together in an MT system through the
Bayesian noisy channfamework as follows:

f= argmaxP (tjs) argmaxP (sjt)P (t) (1.1)
t t

Here, we have a source senterscie which we ask oudecoder an algorithm that implements the afore-
mentioned search process, to nd the best translation, thmax part. P (sjt) represents th&anslation
model, the faithfulness of the translation in terms of megnireservation between the source and the target
sentences; where®4t) represents theanguagemodel, the uency of the translated text.

SHowever, the landscape is changing rapidly! As | am prejgthis dissertation, there have been recent
announcements from Google Translate (Wu et al., 2016) ineBdper 2016 and SYSTRAN (Crego et al.,
2016) in October 2016 on using Neural Machine TranslationHeir production systems.

4Symmetrization is achieved by training IBM models in bottedtions, source to target and vice versa,
then intersecting the alignments. There are subsequdmntitpes that jointly train alignments in both direc-
tions such as (Liang et al., 2006).
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phrase tablgogether with various scores to evaluate phrase pairsferdiit aspects, e.g.,
how equivalent the meaning is, how good the alignment is Fégure 1.5 gives an example
of how a phrase-based system translates.

| She loves | | cute | | cats |

| Elle aime | | les chats | | mignons |

Figure 1.5:Phrase-based machine translatiodMT) — example of how phrase-based MT
systems translate a source sentence “She loves cute daist target sentence “Elle aime
les chats mignons”: sentences are split into chunks andesi@e translated.

State-of-the-art MT systems, in fact, contain more comptsthan just the two basic
translation and language models. There are many knowlergees that can be useful to
the translation task, e.g., language model, translatiodeihaeversed translation model,
reordering modl length/unknown penalti@setc. To incorporate all of these features,
modern MT systems use a popular framework in natural langagcessing, called the
maximum-entropgr log-linearmodel (Berger et al., 1996; Och and Ney, 2002), which has
as its special case the Bayesian noisy channel model thatievg imentioned in Eq. [(1.11).

Training log-linear MT models can be done using the standeaximum likelihood es-
timationapproach. However, in practice, these models are learnelitéstly optimizing
translation quality metrics such as BLEU (Papineni et &02) in a technique known as
minimum error rate trainingor MERT (Och, 2008). Here, BLEU is an inexpensive auto-
matic way of evaluating the translation quality; the idetbisount words and phrases that
overlap between machine and human outputs. Despite maigrsems, BLEU is still the
most widely used evaluation metric up until now thanks taitsplicity.

Lastly, there has also been effort in addsymntaxto machine translation through tree-
based models such as work by Wu (1997); Yamada and Knightlj2@hiang [(2005),
inter alia. As illustrated in Figure 1.1, these approacheprmbvide gains for several lan-
guage pairs, mostly those that are signi cantly differamteérms of sentence structures

SReordering models learn the patterns of how words move a@osrce and target sentences and are
trained based on the word alignment.

5To produce translations of appropriate lengths and withagorable amount of unknown words, e.g.,
unseen names and numbers at test time.
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such as Chinese and English. However, the gains are ofteeshodmpared to the added
complexity of tree-based models such as requirements ® ¢pawd parsers and syntactic
annotations.

For more information on evaluation metrics, tree-based atspcand other topics in
statistical machine translation, we refer the audiencae &xaellent book by Koehn (2010).

1.2 Neural Machine Translation

While statistical machine translation (SMT) has been ss&fcdly deployed in many com-
mercial systems, it does not work very well and suffers fromfollowing two major draw-
backs. First, translation decisions #weally determinedas we translate phrase-by-phrase
and long-distance dependencies are often ignored. Motdegmmatically, the entire MT
pipeline is becoming increasingtpmplexas more and more features are added to the log-
linear framework such as in recent MT systems (Galley andriviggy 2003] Chiang et al.,
2009; Green et al., 2013). Many different components nedzettuned separately, e.g.,
translation models, language models, reordering modtls, vehich makes it dif cult to
combine them together and to innovate. As a result, the latms quality has saturated
for SMT and big changes to the existing framework were in deed.

Neural Machine Translation (NMT) is a new approach that eslsies the aforemen-
tioned problems. First, NMT is single big neural networkwith millions of arti cial neu-
rons) that is designed to model the entire MT process (Ka&inter and Blunsam, 2013;
Sutskever et al., 2014; Cho et al., 2014). NMT requimeésimal domain knowledggust a
parallel corpus of source and target sentence pairs, sitai8MT, but with far less prepro-
cessing steps before a translation model can be built. Tis appealing feature of NMT
is that it can be trainednd-to-endlirectly from the learning objective; hence, eliminating
the problem of having to learn multiple components in SMTisys.

Unlike those intricate decoders (the search procedure weiomed earlier) in popular
SMT packages (Koehn etlal., 2007; Chiang, 2007; Dverlet@L02Cer et all, 2010), the
translation story of NMT is conceptually simple. NMT traaitgs as follows: aencoder
reads through the given source sentence to build a “thouvgbth, a sequence of numbers

"This term was coined by Geoffrey Hinton in this artidigtps://www.theguardian.com/
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that represents the sentence meanirttg@der then, processes the sentence vector to emit
a translation, as illustrated in Figure11.7. This is oftefiemed to as the encoder-decoder
architectur@ In this manner, NMT addresses the local translation prolxe&MT,; it does

not do phrase-by-phrase translation. Instead, NMT gatildosmation from the entire
source sentence before translating; as a result, it canredphg-range dependenciés
languages, e.g., gender agreements; structural orderirsgbject, verb, and object; etc.

Elle aime les
chats mignons

She loves
cute cats

Decoder

1
rOO000
NP WL DNWU

Figure 1.6:Encoder-decoder architecture— example of the general approach for NMT.
An encoderconverts a source sentence into a meaning vector which seg@akrough a
decoderto produce a translation.

A realization of NMT is to use a powerful model for sequentiata, namely recurrent
neural network (RNN), for both the encoder and decaoder k8ues et al., 2014; Cho et al.,
2014). Interested readers can nd details about RNNs ini@e@&2; in a nutshell, RNNs
allow us to build representations for variable-length inpin our case, sentences — using
a dynamic memory structure. In Figlrel1.7, deep RNNs withgtagking layers are used
to build a sequence-based NMT: an encoder rst construcepeesentation for a source
sequence; a decoder, then, generates a target sequensgiri at a time until a special
end-of-sequence symbol is produced.

Sequence-based NMT has several advantages. First, NMT-bearoh decoders that
generate words from left to right can be easily implementeike the highly complex
beam-search decoders in SMT (Koehn et al., 2003). More itaptly, the use of RNNs in
NMT allows for better generalizatioto very long sequences while not having to explicitly
store any gigantic phrase tables or language models as catdeeof SMT. As sequence-
based NMT is currently the de facto approach, we will use NMTgénerally refer to
sequence-based NMT throughout this thesis unless othestased.

science/2015/may/21/google-a-step-closer-to-develop ing-machines-with-
human-like-intelligence
8Allen (1987); Chrisman (1991) wrote the very rst papers mceder-decoder models for translation!
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translation generated

Elle aime les chats mignons

She loves cute cats _ Elle aime les chats mignons

Figure 1.7: Sequence Models for NMT— example of a deep recurrent architecture for
translating a source sentence “She loves cute cats” intogattaentence “Elle aime les
chats mignons”. On the decoder sidmrdsgenerated from previous timesteps are used as
inputs for the next ones. Here,“marks the end of a sentence.

1.3 Thesis Outline

Despite all the aforementioned advantages and potentlasearly NMT architecture
(Sutskever et all, 2014; Cho et al., 2014) still has many Hemks. In this thesis, | will
highlight three problems pertaining to the existing NMT rabchamely thevocabulary
coveragethememory constraintand thdanguage complexitissues. Each chapter is de-
voted to solving one of these problems. In each chapter| dedcribe how | have pushed
the limits of NMT, making it applicable to a wide variety ohiguages with state-of-the-art
performance such as English-French (Luong et al., 2015g)ligh-German_ (Luong et al.,
2015b; Luong and Manning, 2015), English-Vietnamese (lgummd Manning, 2015), and
English-Czechl(Luong and Manning, 2016). Towards filtere of NMT, | answer two
questions: (1) whether we can improve translation by jgilehrning from a wide variety of
sequence-to-sequence tasks such as parsing, image oggieration, and auto-encoders
or skip-thought vectors (Luong etiel., 2016); and (2) whethe can compress NMT for
mobile devices|(See etlal., 2016). In brief, this thesis gaoized as follows. | start off
by providing background knowledge on RNN and NMT in Chapt€eFize aforementioned
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three problems and approaches to the future of NMT are ddtailChapters|3,] 4] 5, ahd 6
respectively, which we will go through one by one next. Cedgtwraps up and discusses
remaining challenges in NMT research.

Copy Mechanisms

A signi cant weakness in the rst NMT systems is their inabjlto correctly translate
very rare words: end-to-end NMTs tend to have relativelylswagabularies with a single
<unk> symbol that represents every possible out-of-vocabul@@\() word. In Chap-
ter[3, | propose simple and effective techniques to addiéssdcabulary sizgoroblem
through teaching NMT to “copy” words from source to targgte8i cally, | train an NMT
system on data that is augmented by the output of a word aéghaigorithm, allowing
the NMT system to emit, for each OOV word in the target sergetize position of its
corresponding word in the source sentence. This informatidater utilized in a post-
processing step that translates every OOV word using aod&ty. My experiments on the
WMT'14 English to French translation task show that this Inogk provides a substantial
improvement of up to 2.8 BLEU points over an equivalent NM§teyn that does not use
this technique. With 37.5 BLEU points, this NMT system is trs# to surpass the best
result achieved on a WMT'14 contest taskhis chapter is based on the following paper
(Luong et al., 2015c) in which I, llya Sutskever, and Quochares the rst co-authorship.

Attention Mechanisms

While NMT can translate well for short- and medium-lengthteaces, it has a hard time
dealing with long sentences. An attentional mechanism waggsed by Bahdanau et al.
(2015) to address thaentence lengtiproblem by selectively focusing on parts of the
source sentence during translation. However, there haslitébework exploring useful ar-
chitectures for attention-based NMT. Chapter 4 examinessimple and effective classes
of attentional mechanism:global approach which always attends to all source words and
alocal one that only looks at a subset of source words at a time. | dstraie the effec-
tiveness of both approaches on the WMT translation taskedest English and German in
both directions. With local attention, | achieve a signintagain of 5.0 BLEU points over
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non-attentional systems that already incorporate knowhntigues such as dropout. My
ensemble model using different attention architecturekigia new state-of-the-art result
in the WMT'15 English to German translation task with 25.9Bl points, an improve-
ment of 1.0 BLEU points over the existing best system backetlldT and ann-gram
reranker.This chapter is based on the paper (Luong et al., ZOQ‘;b).

Hybrid Models

Nearly all previous NMT work has used quite restricted vatabes, perhaps with a subse-
guent method to patch in unknown words such as the copy msthaimentioned earlier.
While effective, the copy mechanisms cannot deal with @l¢bmplexity of human lan-
guages such as rich morphology, neologisms, and infornedliisgs. Chaptel]5 presents a
novel word-character solution to tHahguage complexitgroblem towards achieving open
vocabulary NMT. | build hybrid systems that translate mpatltheword level and consult
charactercomponents for rare words. My character-level recurrentadenetworks com-
pute source word representations and recover unknownt targels when needed. The
twofold advantage of such a hybrid approach is that it is mfasker and easier to train
than character-based ones; at the same time, it never @edudnown words as in the
case of word-based models. On the WMT'15 English to Czeahstadion task, this hy-
brid approach offers an addition boost &* 114 BLEU points over models that already
handle unknown words. My best system achieves a new stdteeedrt result witi20:7
BLEU score. | demonstrate that my character models can ssitdly learn to not only
generate well-formed words for Czech, a highly-in ecteddaage with a very complex
vocabulary, but also build correct representations foriEhgource wordsThis chapter is
based on the following paper (Luong and Manning, 20id)ich takes inspirations from
my earlier work(Luong et al., 2013) and (Li et al., 2015).

% Besides, | also have a follow-up paper_(Luong and Mannind52@n applying these attention-based
models to thdransfer learningandlow-resourcesettings for TED talk translation, which obtains state-of-
the-art performance for English-German and English-\dgetase (Cettolo et al., 2015).
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The Future of NMT

Chaptef_6 answers the two aforementioned questions forutiieef of NMT: whether we
can utilize other tasks to improve translation and whethecan compress NMT models.
The former question is important because of the fact thatsh&MT systems only utilize
parallel corpora despite an abundant amount of availaliéefdam monolingual and multi-
lingual corpora as well as data from related tasks. Therlgtiestion is motivated by the
indispensable role of mobile devices in society now%sd the fact that state-of-the-art
NMT models are beyond the storage capacity of existing reajadgets.

For the rst question, | examine three multi-task learnijTL) settings for sequence
to sequence models: (a) t@e-to-manysetting — where the encoder is shared between
several tasks such as machine translation and syntacsinga(b) themany-to-onesetting
— useful when only the decoder can be shared, as in the casmskation and image cap-
tion generation, and (c) thmany-to-manyetting — where multiple encoders and decoders
are shared, which is the case with unsupervised objectneéganslation. My results show
that training on a small amount of parsing and image captata dan improve the transla-
tion quality between English and German by ud#BLEU points over strong single-task
baselines on the WMT benchmarks. Rather surprisingly, ehestablished a nestate-
of-the-artresult in constituent parsing with 93.Q By utilizing translation data. Lastly, |
reveal interesting properties of the two unsupervisedlegrobjectives, autoencoder and
skip-thought, in the MTL context: an autoencoder helps laserms of perplexity but
more on BLEU scores compared to skip-thoughhis section is based on the following
paper (Luong et all, 2016).

For the second question, | examine three simple magnitadeebpruning schemes to
compress NMT models, nametyass-blind class-uniform andclass-distribution which
differ in terms of how pruning thresholds are computed ferdifferent classes of weights
in the NMT architecture. | demonstrate the ef cacy of weigitining as a compression
technique for a state-of-the-art NMT system. | show that &tiTNmodel with over 200
million parameters can be pruned by 40% with very little perfance loss as measured
on the WMT'14 English-German translation task. This shegistlon the distribution of

101n 2014, the number of mobile devices is more than the numigezaple in the world (Boren, 2014).
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redundancy in the NMT architecture. My main result is thahwetraining, | can recover
and even surpass the original performance with an 80%-dramedel. This section is
based on the following paper (See et al., 2016) in which Abfgee and | share the rst
co-authorship.

Wrap-up

In summary, this thesis has touched on a variety of aspeetdich NMT can be signif-
icantly improved. My hope is to convince the reader at the @hnthis thesis that NMT
models have successfully taken over the role of SMT modelsalhcontinue to be the de
facto standard for several years to come. Still, there aneyroballenging and rewarding
problems to be explored which I will summarize in the condoshapter.The material is
based on an NMT tutorial given by me, Kyunghuyn Cho, and @ipieer D. Manning at
ACL'201

All code, data, and models used in this thesis can be founkttpt//nip.
stanford.edu/projects/nmt

The tutorial website is dittps://sites.google.com/site/acl16nmt/


http://nlp.stanford.edu/projects/nmt
http://nlp.stanford.edu/projects/nmt
https://sites.google.com/site/acl16nmt/

Chapter 2

Background

Give me a place to stand and | will move the earth.

Archimedes.

In this chapter, | provide background knowledge on threertapics, namely language
model (LM), recurrent neural network (RNN), and neural maeltranslation (NMT). Lan-
guage modeling is an important concept in natural languageegsing to allow one to do
word prediction i.e., guessing which word will come next given a precediogtext. As
we shall see later, there is an interesting fact that foradenachine translation, it all started
from language modeling. Before | get into NMT, we will go thgh the basics of recur-
rent neural network, the heart of sequence-based NMT, tlaiedpow RNNs can naturally
and effectively modeVariable-lengthinputs, or sentences in the context of the translation
task. | cover in depth one particular type of RNN, theng Short-term Memor{L.STM),
that makes training RNNs easier. Interested readers camllritie details of how to im-
plement LSTM “by hand” with detailed formulas on gradientrqmutation as compared to
the automatic differentiation feature given by nowadayspdearning frameworks. The
understanding of language modeling will allow us to extedNR into recurrent neural
language models which enalidenguage generatigra key step in NMT. Lastly, with RNN
as a basic building block, | describe key elements of an NMStesy as well as tips and
tricks for better training and testing NMT.

14
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2.1 Language Model

As | have discussed in Sectibnll.1, language modeling playsispensable role in MT to
ensure that systems produce uent translations. Spedyctile job of an LM is to specify
a probability distribution over sequences of symbols (ofteords) so that one can judge
if a sequence of words is more likely or “ uent” than anoth&a accomplish that, an LM

yn
p(y) = p(yily«i) (2.1)
i=1
In the above formula, each of the individual terp{sijy<; ) is the conditional probability
of the current wordy; given previous wordy.; , also referred to as theontextor thehis-
tory. To model these conditional probabilities, traditionagram LMs have to resort to the
Markovian assumption to consider only a xed context windofw 1 words, effectively

all possiblen-grams occurred in a training corpus, the number of whicllduibecomes
enormous. As a result, despite much research in this arese(Red, 2000; Stolcke, 2002;
Teh,[2006; Federico etial., 2008; Hea eld, 2011), inter,aligram LMs can only handle
short contexts of about 4 to 6 words, and does not generablgownseem-grams.

Neural language models (NLMs), rst proposed|by Bengio €{2003) and enhanced
by others such as Morin and Bengio (2005); Mnih and Hinto®€@(Mnih and Teh (2012),
have addressed the aforementioned concerns using two i@@aense distributed repre-
sentationgor words which encourage sharing of statistical weights/een similar words;
and (b)feed-forward neural network® allow for better composition of unseen word se-
guences at test time without having to explicitly store allmerations oh-grams. These
features function as a way to combat the “curse” of dimeradignin language modeling.
As a result, NLMs are compact and can extend to longer cantext

As a natural development, subsequent MT systems (Schw&ik,; 2/aswani et al.,
2013; Luong et all, 2015a), inter alia, started adopting Nla¥bngside with traditionai-
gram LMs and generally obtain sizable improvements in tevfrtsanslation quality. To
make NLMs even more powerful, recent wark (Schwenk, 2018;&al.| 2012; Auli et al.,
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2013; Devlin et al., 2014) proposes to condition on sourcedwas well as the target con-
text to lower uncertainty in predicting next words (see Fajmﬂ These hybrid MT
systems with NLM components, while better than statisfid@lsystems, still translate lo-
cally and fail to capture long-range dependencies. For gi@mm Figurd 2,11, the source-
conditioned NLM does not see the word “stroll”, or any othesrds outside of its xed
context windows, which can be useful in deciding that thet mexd should be “bank” as
in “river bank” rather “ nancial bank”.

source context
We went for a strolljalong the South Bank

target context

... allés pour une|promenade le long de la rive
bank (river)

walk along

Figure 2.1:Source-conditioned neural language modeldNLMs) — example of a source-
conditioned NLM proposed by Devlin etlal. (2014). To evatukhow likely a next word
“rive” is, the model not only relies on previous target wofdsntext) “promenade le long
de la” as in traditional NLMs (Bengio et al., 2003), but algdizes source context “along
the South Bank” to lower uncertainty in its prediction.

More problematically, the entire MT pipeline is already qaex with different com-
ponents needing to be tuned separately such as translatidelsn language models, and
reordering models. Now, it becomes even worse as differeumtah components are incor-
porated in to the translation framework. This inspires tinhlof neural machine translation
with a goal of redesigning the entire MT pipeline completdlg start, we will rst learn
about recurrent neural network, a building block for NMT aallvas a key component to
address the local translation problem in statistical M Tiays.

2.2 Recurrent Neural Network

Recurrent neural network (RNN) (Elman, 1990) is a powerfd axpressive architecture

In (Devlin et al., 2014), the authors constructed a modeldbaditions on 3 target words and 11 source
words, effectively building 45-gram LM.
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that can handle sequential data and has been successfpligcafo language modeling
tasks|(Mikolov et al., 2010, 2011; Mikolov and Zweig, 201FHormally, an RNN takes as

inputx;, an RNN updates its memory to produce a hidden s$tatehich one can think of
as a representation for the partial sequexge The key secret sauce is in the recurrence
formula of an RNN that de nes how its hidden state is updatatits simplest form, a
“vanilla” RNN de nes its recurrence function as:

he=f (Xe;he 1) (2.2)

In the above formuldf, is an abstract function that computes a new hidden state ¢
current inputx; and the previous hidden state ;. The starting stath is often set td
though it can take any value as we will see later in the cortEXMMT decoders. A popular
choice off is provided below with being a non-linear function such sigmoid ortanhH

hi= (WynXt+ Wpnhhy 1) (2.3)

At each timestep, an RNN can (optionally) emit an output symlyplhich can either
be discrete or real-valued. For the discrete scenario,wikioften the case for linguistic
applications, a probability distributiomover a set of output class#sis derived a

St = Whyht (24)
p; = softmax(sy) (2.5)

Here, | introduce a new set of weighté,, 2 RIY! 9, with d being the dimension of the
RNN hidden state, to compute a score vestoor logits, over different individual classes.
Often, with a large output séf, the matrix-vector multiplication in Eq[_(2.4) is a major
computational bottleneck in RNNs, which results in sevehalllenges for neural language

2There could also be an optional bias term in Eq.](2.3).
3For the real-valued case, | refer readers to mixture demsiylels \(Bishap, 1994) which have been
applied to RNN training, e.g., for hand-writing synthesisdves, 2013).
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modeling and machine translation that | will address inrlatepters. Theoftmaxfunc-
tion transforms the score vectsy into a probability vectop;, which is de ned for each
speci c elementy 2 Y as below. For convenience, we overload our notations t@ys9
ands;(y) to refer to entries in the vectops ands; that correspond tg.

est (y)

p = (2.6)
Y2y est %)

pe(y) =
With the above formulas, | have completely de ned the RNNgintiset which con-
sists ofinputconnectiondV ;,, recurrentconnectiondV p,, andoutputconnectionsVy, .
These weights are shared across timesteps as illustrakédure[2.2. This is, in fact, the
beauty of RNNs as they can capture the dynamics of arbiytremig sequences without
having to increase their modeling capacity. In contrastdferward networks can only
model relationship over xed-length segments.

output Y1 Y2

hidden layer

input X1 X2

Figure 2.2: Recurrent neural networks — example of a recurrent neural network that

W , and outputWy,, weights are shared across timesteps.

Throughout this thesis, RNNs will be discussed from a lagguaarning perspective.
For more details on general RNNSs, | refer readers to theviatig resources (Sutskever,
2012; Mikolov, 2012; Karpathy, 2015).

Recurrent Language Models As a special case of RNN, recurrent language model as-
sumes that the input and output sequences consist of dissyatbols, often words in a
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language. Additionally, the input sequence is prependdl aispecial starting symbol
<s>,e.g.x = f <s>,"", “am”, “a”, “student’g. Since the goal of a language model
is to predict the next word, the output sequence is a shHi-bgrsion of the input and
ends with a special symbel/s > that marks the boundary, e.g.,= f “I”, “am”, “a”,
“student”,</s >g. As lillustrate in Figuré 2]3, the word emitted at one tinegsis used

as an input to the next timestep.

output I am a student </s>

hidden layer

input <s> I am a student

Figure 2.3: Recurrent language models- example of a recurrent language model that
processes a sentence “I am a student” and predicts next asitigoes. Beside the shared
recurrentW, and feed-forwardV ,, weights, there is an additional shared embedding
weight matrixW . that needs to be learned as well.

To apply RNNSs to sentences in languages, or generally segaeri discrete symbols,
one can consider one-hot representations for words,x;e2 RIVI, with V being the
vocabulary considered. However, for a large vocabularysuch a representation choice
is problematic as it results in a large weight mawik,, and there is no notion of sim-
ilarity between words. In practice, low-dimensional densgresentations for words, or
embeddingsare often used to address these problems. Speci callypdredding matrix
W, 2 R%I Vijs looked up for each worg; to retrieve a representation 2 R%. As a
result, a vanilla recurrent language model will generalydr = fW ;W pn; Why; Weg
as its weights.
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2.2.1 Training & Backpropagation

accordingly. The learning objective is to minimize the rtegelog-likelihood, or thecross-
entropyloss, of these training examples:

X .
J()= logp y® (2.7)
i=1
XX o
= logp v;"jy<! (2.8)
i=1 t=1
RNN learning is often done using mini-batch stochastic gratddescent (SGD) algo-
rithms in which a small set of training examplesjrani-batch is used to compute the
gradients and update weights one at a time. Using mini-batbhs several advantages: (a)
the gradients are more reliable and consistent than then&ndetting which updates per
example, (b) less computation is required to update themignlike the case of full-batch
learning which has to process all examples before updatimdy(c) with multiple examples
in a mini-batch, one can turn matrix-vector multiplicatsosuch as those in Ed._(2.3) and
Eq. (2.4) into matrix-matrix multiplications which can beployed ef ciently on GPUs.
The simplest weight update formula withas a learning rate is given below:

rJC) (2.9)

Here,r J( ) is the gradient of the loss that we are minimizing with respe¢he model
weights. Intuitively, what the formula does is to update weaghts along the opposite
direction of the gradient to minimize the loss objective.eTharning rate , sometimes
referred as atep sizeis a hyperparameter which controls how much we update tigige
along the optimization direction.

Mathematical Helpers To simplify the maths for our backpropagation derivations i
the next section, | present here a few simple remarks and &amn vector calculus and
gradient computation.
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Remarkl. Letu, v be any vectors and be element-wise vector multiplication, we have:
diaglu) v=u v (2.10)

Here diagu) refers to a diagonal matrix with its diagonal elements baing

Lemmal. Letl be a loss value for which we already know how to compute itdigrdadv
with respect to a vectov. Given thatv = f (Wh), the gradientsdh; dW of the losd
with respect to the vectdr and the matridV can be derived as follows:

dh =W~ (fqwWh) dv) (2.11)
dw =(f{wh) dv) h” (2.12)

Proof. Letz = Wh , we have the following derivations:

dh = g\/h@@d(v | [Vector calculus chain rules]
: z
@ @ dv
= W~ diag(f Yz)) dv
=W~ (fqYwh) dv) [Remark1]

Letw; be thei™ row vector of matriXV"andv;; z, be thei!" elements of vectors; z.
Also denotingdw;; dv; to be the gradients dfwith respect taw;; v;, we have:

@z @v .

dw; = — —— dy Vector calculus chain rules

' av @z : ]

“h

= @V@Ivi f4z) dv

=h fYz) dv
dw>” =(fYz) dv) h” [Transposing]
dw =(f{wWh) dv) h” [Concatenating row derivatives]
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Corollary 1. As a special case of Lemra 1, wHers an identity function, i.ey = Wh ,
we have:

dh=W> dv (2.13)
dW =dv h’ (2.14)

Remark2. Letu, v;s be any vectors such that= u f (v). Also, letdu, dv; ds be the
gradients of a los$ with respect to the corresponding vectors. We have:

du=f(v) ds (2.15)
dv=Ffqv) u ds (2.16)

Remark3. As a special case of Remark 2 wheis an identity function, i.es = u v.
We have:

du=v ds (2.17)
dv=u ds (2.18)

Single-Time Backpropagation To compute the gradients for the lak§g ), we rst need
to be able to derive the gradients of the per-timesteplloss logp:(y;) with respect
to both the RNN weight§W i, ; Wn; Whyg and the input$ x; h; 19. Itis worth noting

that x; is a column vector in the embedding matkiX.. We denote these gradients as

fdW xn; dW i dWy; dX¢; dh 19 respectively and de ne intermediate gradiedss; dh;
similarly with s; andh; being used in Eq[(2.4) and E@Q._(R.5). Starting with the lpsse
employ backpropagation through structures (Goller andriér, 1996) to derive each gra-
dient one by one in the following ordelg:!  s; 'f h ;Wpyg!'f X he 1, Wy Whng.

t(Y)
First, from Eq. [(2.6), withp(y) = Pesm we have:
y%2
[
@a_ @ X
ds;= — = — o S0 g 2.19
t @ G, g t(Yr) ( )

yO
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Computing per-coordinate gradiesi(y) gives:

I 8

X - < 1 =
log €0 s(y) = P() Y= (2.20)

y° " pe(y) y 6y,

@
@ (y)

The above gradients can be concisely written in vector fam a
dSt = Pt 1Yt (221)

Here,p; is the probability distribution de ned in Ed. (2.5) and haseim calculated in the
forward pass, so we simply reusel, is a one-hot vector with 1 at positign. Applying
Corollary[1, noting thas; = Wy h¢ in Eq. (2.4), we arrive at:

dh, = W, ds, (2.22)
dWyy = ds; h (2.23)

At this point, | have derived part of the backpropation pchae which can be applied
to any hidden unit type, e.g., the aforementioned vanilld&NRiX the LSTM unit that | will
describe shortly in the next section.

Vanilla RNN Backpropagation First of all, we can simplify the notation to have
Tmn=[Wxn Whh]andz; =[x¢; hy 1], so the RNN formulation in EqL(2.3) becomes:

ht = (T mnzt) (224)

Applying Lemmé_ 1, we have:
dz, = Tr>nn ( O(Trnnzt) dht) (2-25)
dT rmn = ( O(T rnnZt) dht) Zt> (2.26)

This is one of thericks that | use to better utilize GPUs by creating larger matrices
and vectors, i.e.T .n andz,. From Eq. [2.25) and Eq._(Z.26), one can easily extract the
following gradients: (a)Jdx; — embedding gradients which | use to sparsely update the
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embedding weight#/ ¢, (b) dh; ; —gradients of the previous hidden state, which is needed
by the backpropagation-through-time algorithm that | wilcuss next, and (W, as
well asdW , — the RNN input and recurrent connectidns.

Backpropagation Through Time (BPTT) Having de ned a single-timestep back-
propagation procedure, we are now ready to go through the TBRIgorithm
(Rumelhart and McClelland, 1986; Werbos, 1990). Inspiredbhbtskever (2012), | sum-
marize the BPTT algorithm for RNNs below with the followingmarks: (a) Lines 3, 5, 6,
7 accumulate the gradients of RNN weighW py; Wy, ; W nn; W g over time; (b) In line
7, dx refers to gradients of words participating in the currentisiatch which | use to
sparsely updatwe;H and (c) Line 4 accumulates gradients for the current hidtete s,
by considering two paths, a “vertical” one from the currergd at time and a “recurrent”
one from the timestep+ 1 which was set in Line 8 earlier.

2.2.2 Long Short-Term Memory

Even though computing RNN gradients is straightforwardeotiee BPTT algorithm has

been plotted out, training is inherently dif cult due to tm®nlinear iterative nature of

RNNs. Among all reasons, the two classic problems of RNNsdftan arise when deal-

ing with very long sequences are tegplodingand vanishinggradients as described by
Bengio et al.[(1994). In short, exploding gradients referthe phenomenon that the gradi-
ents become exponentially large as we backpropagate aveymnaking learning unstable.
Vanishing gradients, on the other hand, is the oppositel@molvhen the gradients go ex-
ponentially fast towards zero, turning BPTT into truncaB®IT T that is unable to capture
long-range dependencies in sequences.

40One can also separately derive these gradients as follows:

dx¢ = Wy ( ATmnzi) dhy) (2.27)
dhy 1= Wi ( ATmnze) dhy) (2.28)
dWyn =( ATmnze) dhy) x7 (2.29)
dWhn = ( (Tmeze) dhy) hy (2.30)

5In multi-layer RNNs,dx. is used to send gradients down to the below layers.
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Algorithm 1: BPTT algorithm for “vanilla” RNNs

1fort=T! 1do

/I Output backprop

ds¢ 1y, pt

3 dWhy dWhy + ds; ht>

4 dhy dhy+ W ds

/I RNN backprop

5 dW dW i + ( O(Trnnzt) dhy) Xt>
6 dWhn  dWpn +( ATmnzi) dhy) hi g
/I Input backprop

7 dx ¢ W (O(Trnnzt) dhy)

8 dhey 1 Wi ( AT mnzt)  dhy)

9 end

Let us try to explain the aforementioned problems inforgnaiid refer readers to more
rigorous and in-depth analysesiin (Bengio et al., 1994; dmtdr and Schmidhuber, 1997;
Martens and Sutskever, 2011; Pascanu et al.,/2013). The caase of these two prob-
lems all lies in Line 8 of the BPTT algorithm which can be retem asdh; ; = W},
diag( AT mnz:)) dh; (see Remark]1). We can try to understand the behavior of RN#ls o
time by assuming for a moment that there is no contributiomfintermediate losses, i.e.,
Line 4 is “ignored”. Given such an assumption, a signal bagagated from the current
hidden state over K steps will becordie; ¢ = iK=1 W, diag( YTzt i+1))  dhy.
Assuming that the non-linear functionis bounded, e.g.sigm andtanh, and behaves
“nicely”, what we need to deal with now is the multiplicatiohthe recurrent matrix over
time. This leads to the fact that the behavior of RNNs is ofiemerned by the charac-
teristics of the recurrent matrb/ , and most analyses examine it in terms of the largest
eigenvalue otV , as well as the norms of these signals. Roughly speakinge ifatyest
eigenvalue is large enough, exploding gradients will beljyiko happen. On the contrary, if
the largest eigenvalue is below a certain threshold, varggiradients will occur, as clearly
explained by Pascanu et al. (2013).

Gradient Clipping In practice, it is generally easy to cope with the explodingdient
problem by applying different forms of gradient clippinchd rst approach was proposed
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by Mikolov (2012) through the form of temporalement-wiselipping. At each timestep
during backpropagation, any elementsibfthat are greater than a positive thresholor
smaller than - will be set to or - respectively. One can also perform gradiantm
clipping as suggested by Pascanu et al. (2013). The idemdesi given a nal gradient
vectorg computed per mini-batch, if its norfpgjj is greater than a threshold then we
will use the following scaled gradie%g instead. The latter approach is widely used in
many systems nowadays and can also be used in conjunctibriheitformer. | take the
combined approach in my implementations described latdnigthesis.

Long Short-Term Memory The vanishing gradient problem, on the other hand, is more
challenging to tackle. There have been many proposed agpesdo alleviate the problem
such as skip connections (Waibel et al., 1990; Lin et al. g)98ierarchical architectures
(ELHihi and Bengio, 1996), leaky integrators (Jaeger 212807), second-order methods
(Martens and Sutskever, 2011), and regularization (Pasegal., 2013), to name a few;
also, see (Bengio et al., 2013) for a comparison of some akthechniques. Among all,
Long Short-term Memory (LSTM), invented by Hochreiter arah®idhuber|(1997) and
later re ned by Gers et al. (2000), appears to be one of tha miokely adopted solutions
to the vanishing gradient problem. Graves and colleagugesrde credit for popularizing
LSTM through a series of work (Graves and Schmidhuber, 2Z0039; Graves, 2013). The
key idea of LSTM is to augment RNNs with linearemoryunits that allow the gradient to
ow smoothly through time. In addition, there are gating tsrthat control how much an
RNN wants to reuse memorjofgetgates), receive input signahput gates), and extract
information utputgates) at each timestep. There are many implementatioanices
of LSTM, differing in terms of whether and which biases aredjshow gates are built,
etc.; however, it turns out that these different choices alonmatter much for most cases
(Jozefowicz et al., 2015%; Greff etlal., 2015). As such, iis ection and throughout this
thesis, | will stick to the formulation described In (Zareandt al.| 2014).

Instead of jumping directly into the detailed formulatidet, me provide intuitions on
how to gradually build up an LSTM architecture. First, we canstruct a simple memory
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unit as follows:

Ct=¢C 1+ (WunXi+ Wpahy 1)) (2.31)
ht = C¢ (232)

This architecture can be viewed as a form of “leaky” inteigramentioned in(Sutskever,
2012; Bengio et all, 2013) since it is equivalentto= hy ; + (WXt + Whnhy 1).
Training this network over long sequences is easy since grtion exponentially many
backpropagation paths, there is exactly one path that goesgh all the memory units
(i = 1;T) and is guaranteed to not vanish simice = dc; ; along that path.

Such an architecture, however, does not account for thetHattcertain inputs, e.g.,
function words or punctuations, are, sometimes, not releeethe task at hand and should
be downweighted. Occasionally, we might also want to réeettemory, e.g., at the begin-
ning of each sentence in a paragraph. To add more exibifityj@ower to this architecture,
the LSTM adds forget, input, and output gates as follows:

cc="Ff¢ co1+tic  (WynXe+ Wpnhy 1) (2.33)
hi = o, (ci) (2.34)

Note that, in Eq.[(2.34), the memory cellis passed through a nonlinear functiobefore
the output gate, is used to extract relevant information in the hope for wettrmation
retrieval. As evidence, Greff etial. (2015) have shown thiahsan output nonlinearity is
critical to the performance of an LSTM. Moving on, to ensurattthe gates are adaptive,
we build them from the information given by the current ingytand the previous hidden
stateh; ;. We also want the gates to be[) 1], sosigmwill be used (heresigmrefers to
thesigmoidfunction de ned ad (x) =

T+ e ~)- All of these desiderata lead to the below
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LSTM formulation described in (Zaremba et al., 2014) in whicis chosen to bé&anh:

S|gm 4
% E %: :gg xfthE Xt (2.35)
WiyxoWho5 hy g
tanh W v W nn

fo c1+i¢ Ay (2.36)
o, tanh(c) (2.37)

Cy

h

Following the same spirit as Ed. (2]24), we can be GPU-eftigith Eq. [2.35) since
the 8 different submatrices are grouped into a single bigimatvhich we callT . Let
Z; =[X¢;hy 1]. What we do is rst multiplyT ismz; and then apply different non-linear
functions to corresponding parts of the output. For the edskeriving backpropagation
equations later, we can rewrite EQ. (2.35) as:

Uy = (T istmZt) (2.38)
= g(Txxt + Thhy 1) (2.39)

Here,g is a non-linear function applied element-wise and we degrieosely in the sense
that it useganh only for the vector part correspondingfip andsigmfor the rest.

LSTM Training In the LSTM training pipeline, there are many components #ra
exactly the same or very similar to RNN training. | will nowghiight some key differences.
First of all, LSTM extends the recurrence function to haviejmst the hidden states but also
the memory cells as both inputs and outputs. The de niticasi®elow:

(hye) = f (xeshe 15¢e 1) (2.40)

In our case, the abstract functibris implemented by Ed. 2.85-2.137. Orftgis computed,
the prediction process is the same as that of RNNs which sngby Eq[2.4-2]6. The
training objective in EqL(2]8) remains unchanged as well.
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LSTM Backpropagation Since the prediction procedure is the same, LSTM backpropa-
gation pipeline mimics that of RNNs up to Ef. (2.22) and Eq2&2, which computedh,
anddW ,, respectively.

Given dhy, we now work backward to derive other gradients. First,tistgrfrom
Eq. (2.3T) and by applying Remdrk 2, we have:

do; =tanh(c;) dh, (2.41)
dc; =tanh%c;) o; dh; (2.42)

Before backpropagating E@. (2136), once nrastembeto updatalc; with the gradient
sent back front.., , which is accomplished by Lines 6 and 10 of Algorithin 2. Gitkee
updatedc, we apply Remark]3 to derive:

df = ¢, 1 dc; (2.43)
de, 1 =f dc (2.44)
di, = A, dc (2.45)
dh, = i, dc (2.46)

Letdu, = [di; df ; do; df,] (vertical concatenation), we are now ready to backpropa-
gate through EqL(2.839). In a similar manner as RNNs[EqHZ.20, we arrive at:

dx; = T, (Q4Tismz:) duy) (2.47)
dhy 1= T; (T ismze) duy) (2.48)
dT, = (gATsmze) duy) X7 (2.49)
dTh= (94T mz:) duy) hy . (2.50)

All of these gradients can now be put together in the belowB&I§orithm for LSTM:
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Algorithm 2: BPTT algorithm for LSTM
1fort=T! 1do
/[ Output backprop
2 ds; 1, px
3 dWhy dWhy + ds; ht>
dh; dh;+ Wh>y ds;
/I LSTM backprop
5 do; tanh(c;) dh,
6 dc; dc;+tanh%c;) o; dh;; /I Already included dcis1
7 dfy ¢ 1 dc;
s | di; A dc
o | di, iy dc
10 dc; ¢ f¢ dc;; /[ Compute dc; ;

14
15
16

du, = [di;df ;; do; dfi]

dT« (0T ismz) duy) X7
dTh  (0ATiwsmz:) duy) hy
/I Input backprop

dx; Ty (ATwsmzi) duy)
dhi 1 Tp (QATwsmzi) duy)

end
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2.3 Neural Machine Translation

Having introduced recurrent language models, one can githphk of neural machine
translation (NMT) as a recurrent language model that carditon the source sentence.
More formally, NMT aims to directly model the conditionalgtrability p(yjx) of translat-

through arencoder-decoddramework (Kalchbrenner and Blunsom, 2013; Sutskever.et al
2014;Cho et all, 2014). Thencodercomputes a representatisiior each source sentence.
Based on that source representation dbeodergenerates a translation, one target word at
atime, and hence, decomposes the log conditional probehdi

- X m .
logp(yjx) = _ 1ogp(¥ijy«;s) (2.51)

NMT models vary in terms of the exact architectures to use. afural choice for
sequential data is the recurrent neural network (RNN), tsedhost of the recent NMT
work and for both the encoder and decoder. The used RNN mdueiever, differ in terms
of: (a)directionality— unidirectional or bidirectional; (ljepth— single or deep multi-layer;
and (c)type— often either a vanilla RNN, an LSTM (Hochreiter and Schroiokr, 19977),
or a gated recurrent unit (GRU) (Cho et al., 2014). In genéoalthe encoder, almost any
architecture can be used since we have fully observed theesgentence. For example,
Kalchbrenner and Blunsom (2013) used a convolutional newwtvork for encoding the
source. Choices on the decoder side are more limited singeeee to be able to generate
a translation. At the time of this thesis, the most popular@his a unidirectional RNN,
which simpli es the beam-search decoding algorithm by m@dg translations from left
to right.

In this thesis, all my NMT models are deep multi-layer RNNschhare unidirectional
and have an LSTM as the recurrent unit. | show an example df swcel in Figuré 2J4. In
this example, | train my model to translate a source sentdrasa a student” into a target
one “Je suis étudiant”. At a high level, my NMT models conhsistwo recurrent neural
networks as described in Section]2.2: émcoderRNN simply consumes the input source
words without making any prediction; tltecodey on the other hand, processes the target
sentence while predicting the next words.
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target output words

Y »

Je suis étudiant _ iloss layer
initial (zero) |j |j |j |j softmax layer
states
<>
I I I I hidden layer 2

embedding layer

1h1dden layer 1

I am a student _ Je suis étudiant

i A
Y »

A A
«< Ll

source input words target input words

Figure 2.4:Neural machine translation — example of a deep recurrent architecture pro-
posed by Sutskever etlal. (2014) for translating a sourceesea “| am a student” into a
target sentence “Je suis étudiant”. Heré marks the end of a sentence.

In more detail, at the bottom layer, the encoder and decobiéisReceive agputthe
following: rst, the source sentence, then a boundary matkewhich indicates the transi-
tion from the encoding to the decoding mode, and the targeéree. Given these discrete
words, the model looks up the source and target embeddinggrteve the correspond-
ing word representations. For thesnbedding layeto work, a vocabulary is chosen for
each language, and often the Mgrequent words are selected. These embedding weights,
one set per language, are learned during training. Whilecanechoose to initialize em-
bedding weights with pretrained word representationsh siscword2vec (Mikolov et al.,
2013) and Glove (Pennington et al., 2014), | found, in thestik, that these embeddings
can be initialized randomly and learned from scratch giaegd training datasets.

Once retrieved, the word embeddings are then fed as inputhiatmain network, which
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consists of two multi-layer RNNs “stuck together' — an enmofibr the source language
and a decoder for the target language. These two RNNs, inipl#) can share the same
weights; however, in practice, | found that having two déiet RNN parameters works
better and less over ts to large training datasets. The @aic®&NN uses zero vectors as
its starting states. The decoder, on the other hand, neelavi access to the source
information, so one simple way to achieve that is to inigalit with the last hidden state
of the encode@. In Figure[2.4, | pass the hidden state at the source word ésttido the
decoder side. The&ed-forward(vertical) weights connect the hidden unit from the layer
below to the upper one; whereas, tleeurrent (horizontal) weights transfer the history
knowlege from the previous timestep to the next one. Oftéferdnt weights can be used
across the encoder and decoder as well as across diffeyens;lan the current example, |
have 4 different LSTM weight sef s, detailed in Eq.[(2.38), ovdiencoder, decodgr

f 15t 2"d Jayery. Finally, for each target word, the hidden state at the tgerlas transformed
by thesoftmaxweights into a probability distribution over the target abalary of sizev
according to EqL(Z2]4) and EQ.(2.5).

2.3.1 Training

Training a neural machine translation system is similaramning a recurrent language
model that | have discussed in Section 2.2 except that we toeeg@indle the conditioning
on source sentences. The training objective for NMT is fdated as:

X -
J = log p(yjx) (2.52)

(x;y)2D

Here, D refers to our parallel training corpus of source and targetence pairgx;y).
Given the aforementioned NMT architecture, computing tidTNoss for (x;y) during
the forward pass is almost the same as how we compute the regular RNNngssty.
The only difference is that we have to rst compute repreagons for the source sentence
X to initialize the decoder RNN instead of just starting froenastates. For thieackprop-
agationphase, computing gradients for the decoder is the same dd tdnge described in

5This is not the only way to initialize the decoder, €.g., Chal2(2014) connect the last encoder state to
every timestep in the decoder as an extra input.



CHAPTER 2. BACKGROUND 34

Algorithm[2 for regular RNNs. The last hidden-state gratlfeom the decoder is passed
back to the encoder. | then continue backpropagating tlirdlng encoder in a similar
fashion as that of the decoder but without any predictioedes

More concretely, | present in Algorithim 3 details of the fang pass of an NMT model
which uses a deep multi-layer LSTM architecture. Since timoder and decoder share
many operations in common, we combine the source sentelflgamgth my), the target
sentencey (lengthmy), and the end-of-sentence markers together to form an input
sequencs as shown in Line 1. We rst start with the encoder weights amtial states set
to zero (lines 2-3). The algorithm switches to the decodederat timem, + 1 (line 5).
The same LSTM codebase (lines 8-11) is used for both the enewdl decoder in which
embeddings are rst looked up for the inpsit after that, hidden states as well as LSTM
cell memories are built from the bottom layer to the top ome [t layer). In Line 10,
LSTMrefers to the entire formulation in Eq 2]85-2.37, which ona easily replace with
other hidden units such as RNN and GRU. Lastly, on the decder the top hidden state
is used to predict the next symbgl, (line 13); then, a loss value and a probability
distributionp,; computed according to Eq 2.4-P.5 are returned.

Next, | describe details of the backpropagation step in Algm[4. A quick glance
through the algorithm reveals many similarities comparcethe forward pass algorithm
except that we have reversed the procedure. First, welindigradients of the recurrent
layers at the nal time step (line 1) as well the model weigbitsthe decoder size (line
2) to zero. At timem,, we switch to the encoder mode by saving the currently aceumu
lated LSTM and embedding gradients for the decoder (linenf)sdarting to accumulate
gradients for the encoder weights (line 6). Thanks to thé&japagation procedure pre-
sented earlier for LSTM, we can simplify the core NMT gradieomputation (lines 8-18)
by making the following two referents: (®redict _grad (lines 2-4 of Algorithm(D)
which computes gradients for the target-side losses w#paet to the hidden states at the
top layer and the softmax weight¥,; and (b)LSTMgrad (lines 5-15 of AlgorithniR)
which computes gradients for inputs to LSTM and the LSTM w&sgper layerT I(S'Zm It
is important to note that in Lines 10 and 15 of Algorithin 4, veleldhe gradients ( ow-
ing vertically from either the loss or the upper LSTM layes)the gradient of the below
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Algorithm 3: NMT training algorithm —forward pass.
Input: source sentenceof lengthm,, target sentence of lengthm,,.
Parameters:encodeiW gnceder T enceder geacodeiy decoder T decoder
Output: lossl and other intermediate variables for backpropagation.

1S XLy /I Length of sis my+1+ my+1
2 W TEL) yy encodes T encoder, /I Encoder weights
s b o Il Zero init

4fort=1"! (my+1+ my)do

/I Decoder transition

5 if t ==( my +1) then

6 ‘ We T I(Slt-r:nl-) Wéjecodef T g?r?10der;
7 end

/I Multi-layer LSTM

8 h{o) EmhbLookUp (si; We) ;
9 forl=1! Ldo

10 ‘ h: ¢ Lst™M h;cP;hd 270 ) LSTM hidden unit

Istm
11 end

/' Target-side prediction

12 ift (my+1) then

13 ‘ l;;pr Predict (st+1;h§L);Why);

14 end

15 end
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Algorithm 4: NMT training algorithm -backpropagatiorpass.

1 dh G,y rdeh im0 /I Cell and state gradients
2 AT () dWe; dWyy O /I Model weight gradients

sfort=(my+1+ my)! 1do
/I Encoder transition
4 if t == m, then

5 d\y Jecodes g decoder gy - T &50) - /) Save decoder gradients
6 dTGn);dwe 0
7 end

/I Target-side prediction
8 ift (my+1) then

9 dh;dwW  Predict _grad (St+1;pt;h§”);

10 dh®™  dh{ + dh; /I Vertical gradients
11 dw hy dw hy dw ;

12 end

/I Multi-layer LSTM
13 forl=L! 1do
/I Recurrent gradients

14 dhE')l;dc§'>1;dx;dT LSTMgrad dhf');dcg');h§'>1;c§'>1;hf' v
15 dh Y dh{" Y+ dx; /I Vertical gradients
16 dT fslzm dT I(s|2m+ dT;

17 end

18 dW. Emhgrad _update (St;dhEO);dWe) ;

19 end

20 dWV gncodes g encoder gy - T (L50) /I Save encoder gradients
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layer (which already contains the gradient backpropadadedontally) instead of overrid-
ing it. In Line 18, we perform sparse updates on the corredgipgrembedding matrix for
participating words only. Lastly, implementation wise eoran save memory by using a
single copy ofdh **L) anddc®*1) for all time steps and overwriting the values whenever
we transition from timestepgstot 1 (line 14).

2.3.2 Testing

Having trained an NMT model, we, of course, need to be ablestiuto translate, or
decode, unseen source sentences! This section explanmwg#fierent ways to accomplish
this goal and how to decode with an ensemble of models.

The simplest strategy to translate a source sentence isftopayreedy decoding/hich
lillustrate in Figuré 2.6. The idea is simple: (a) we rst ede the source sentence, “lam a
student” in our example, similar to the training proces$tiile decoding process is started
as soon as an end-of-sentence markéfdr the source sentence is fed as an input; and (c)
for each timestep on the decoder side, we pick the most likelyl (a greedy choice), e.g.,
“moi” has the highest translation probability in the rstaw®ling step, then use it as an
input to the next timestep, and continue until the end-oftesece marker_” is produced as
an output symbol. Step (c) is what makes testing differarhftraining: unlike training in
which correct target words in are always fed as an input, testing, on the other hand, uses
words predicted by the model.

More concretely, | adopt the NMT forward algorithm to arraethe greedy decoding
strategy in Algorithmib. | present the greedy algorithm inlighgly more abstract way
by reusing elements of the NMT forward pass in Algorithm 3rsEiwe run through the
encoder in Line 1 to obtain a representatio) co for the source sentence(lengthmy).

We then use the end-of-sentence markém@$s an input to start the decoding process and
restrict the nal translation to have a maximum length of mXH At each timestep on the
decoder side, we caMultiLayerLSTM , which refers to Lines 8-11 in Algorithid 3, to
build up representations overstacking LSTM layers. The hidden state at the top layer
is used to compute the predictive distributipnfrom which we make a greedy choice

"We often set to 1:5.
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moi suis étudiant _

étudiant |0.1| |0.1| |0.5},(0.1
_ |o0.1| [0.1] |0.2|i|0.6

Je 10.3] [0.1] [0.1|i]0.1

I am a student _ moi suis étudiant

Figure 2.5:Greedy Decoding— example of how a trained NMT model produces a transla-
tion for a source sentence “l am a student” using greedy Bearc

to produce the index of the translation word at that timegliee 7). The process ends
when we have produced the marketds a translation word or when the translation length
exceeds the length threshold.

For NMT, it turns out that such a simple strategy of greedyodétg can produce very
good translations (Sutskever et al., 2014). However, teezela better result, a more popu-
lar strategy is to uselaeam-searclidecoding algorithm which has been the core of phrase-
based statistical machine translation for years (Koehh,e2@03). Unlike phrase-based
SMT, NMT has a much simpler beam-search decoding algorithoest generates trans-
lations word-by-word from left to right and does not have xpleitly explore different
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Algorithm 5: NMT greedydecoding algorithm.

1 hg;co  Encodefx; W gneodes T encodey -

2 t 1;

3Yy1r -,

4 while t m, do /I Length factor 1
5 | hge  MultiLayerLSTM  hy 156 1)y, W decodes T decoder

6 p:  Softmax (h§L>;Why);

7 Yier  argmaxp(i) ; /[ Greedy choice
8 if yi+1 == Index( _) then /l Ending condition

9 | break;

10 end

11 t t+1

12 end

places on the source side to pay attentioH tOne can modify the greedy decoding al-
gorithm as follows to build a beam-search decoder: (a) ab éawestep on the decoder
side, we keep track of the tdp (the beam size) best translations together with their eorre
sponding hidden states; (b) in Line 7 of Algorithin 5, inste&dpplying argmax, we select
the topB most likely words; and (c) giveB previous best translationB best words,
we select a new set & best translations for the current timestep based on the ic@ab
scores (previous translation scores + current word tréoslacores). Extra care needs to
be taken to make sure that in step (c) we select correct hislidées for the new set &
best translations. Sutskever et al. (2014) observed th&NOT, a minimal beam size d?
already provides a signi cant boost in translation qualAybeam of sizelOis often used,
which is signi cant smaller that what phrase-based SMT tetaduse, about00 200
Furthermore, to achieve the very best result, one simméegty which has been widely
adopted for deep neural networks is to use an ensemble oflsndder NMT decoding,
using multiple models is pretty straightforward. The ideahat each model produces
a distribution at each timestep in the decoder (line 6 of Athm [5). These different
distributions are then averaged to produce a new ensendilédtion which we can use

8In SMT, a source coverage set is maintained to indicate whiarlls have been translated. As translation
progresses, an SMT system base on the coverage set and pigkalated source words to continue. Such
an idea of coverage set later re-emerges in NMT which | witladidlse more in Chaptét 7.
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for both greedy and beam-search decoders as if we decodafsamgyle model.

In summary, | have covered all the necessary background lkdge to understand
this thesis entirely. We start with language modeling, apartant concept in natural lan-
guage processing, which turns out to be the basis of NMT. @mnesanply view NMT
as a source-conditioned language model. To understand MW $ystems work, | have
covered the fundamentals of recurrent neural networkswdliow us to handle variable-
length sequences, in our case, the sentences. We haveulzalyistudied Long Short-term
Memory, a speci ¢ type of RNN that is more effective at handllong sequences, in depth.
Finally, given these building blocks, language modeling BNN, | have discussed NMT
in detail from training to testing.



Chapter 3
Copy Mechanisms

Despite all of the advantages mentioned in the previoustehdgasic NMT systems are in-
capable of translating rare words because they have a xatkstesized vocabulatyvhich
forces them to use thenk symbol to represent the large number of out-of-vocabulary
(OQV) words, as illustrated in Figure 3.1. Unsurprisindglgthl Sutskever et al. (2014) and
Bahdanau et al. (2015) have observed that sentences withrar@nwords tend to be trans-
lated much more poorly than sentences containing maindygat words. Standard phrase-
based systems (Koehn et al., 2007; Chiang, 2007; Cer eDal;Dyer et al., 2010), on the
other hand, do not suffer from the rare word problem to theesartent because they can
support a much larger vocabulary, and because their usepbtiexalignments and phrase
tables allows for memorizing the translations of even erély rare words.

Motivated by the strengths of the standard phrase-baséensyspropose and imple-
ment a novel approach to address the rare word problem of NMyspproach annotates
the training corpus with explicit alignment informatiorathenables the NMT system to
emit, for each OOV word, a “pointer” to its corresponding @an the source sentence.
This information is later utilized in a post-processingpstieat translates the OOV words
using a dictionary or with the identity translation, if namslation is found.

Experimental results con rm that this approach is effeeti®n the English to French
WMT'14 translation task, this approach provides an improeat of up to 2.8 BLEU points

! Due to the computationally intensive nature of the softtNMT systems often limit their vocabularies
to be the top 30K-80K most frequent words in each language.

41
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en Theecotaxportico inPont-de-Buis ... [truncated] . .., was taken down on Thursday morning
Hy H A @

. H A . @ _— :
fr: Le portiqueécotaxede Pont-de-Buis . .. [truncated] . .., a é@émoné jeudi matin

nn: Leunk deunk aunk , ...[truncated] ..., a été pris le jeudi matin

Figure 3.1: Example of the rare word problem — An English source sentencery, a
human translation to French), and a translation produced by one of my neural network
systemsiin) before handling OOV words. | highlightordsthat are unknown to my model.
The tokenunk indicates an OOV word. | also show a few important alignméetsveen
the pair of sentences.

(if the vocabulary is relatively small) over an equivalerilN system that does not use
this technique. Moreover, my system is the rst NMT that arfprms the winner of a
WMT'14 task.

3.1 Rare Word Models

Despite the relatively large amount of work done on pure alemachine translation sys-
tems, there has been no work addressing the OOV problem in Ej4iems, with the
notable exception of Jean et al. (2015a)'s work which offesia ef cient approximation
to the softmax to accommodate for a very large vocabularQK50ords). However, even
with a large vocabulary, the problem with rare words, e.gmas, numbers, etc., still per-
sists, and Jean etlal. (2015a) found that using technigmekasto ours are bene cial and
complementary to their approach.

| propose to address the rare word problem by training the NlyStem to track the
origins of the unknown words in the target sentences. If Mktige source word respon-
sible for each unknown target word, | could introduce a gostessing step that would
replace eachink in the system’s output with a translation of its source warging either
a dictionary or the identity translation. For example, iglel3.1, if the model knows that
the second unknown token in the NMT (line) originates from the source woetotax ,
it can perform a word dictionary lookup to replace that unkndoken byecotaxe . Sim-
ilarly, an identity translation of the source woRbnt-de-Buis  can be applied to the
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en: Theunk; porticoinunk,

fr: Leunk. unk; deunk,

Figure 3.2: Copyable Model- an annotated example with two types of unknown tokens:
“copyable”unk, and nullunk. .

third unknown token.

| present three annotation strategies that can easily biedppo any NMT system
(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014 eElal.,l 2014). | treat the
NMT system as a black box and train it on a corpus annotatesheybthe models below.
First, the alignments are produced with an unsupervisemaii Next, | use the align-
ment links to construct a word dictionary that will be usedtfte word translations in the
post-processing st&)l.f a word does not appear in my dictionary, then | apply thentidg
translation.

The rst few words of the sentence pair in Figurel3.1 (lirersand fr) illustrate my
models.

3.1.1 Copyable Model

In this approach, I introduce multiple tokens to represkamarious unknown words in the
source and in the target language, as opposed to using oalyngntoken. | annotate the
OQV words in the source sentence withk 1, unk ,, unk s, in that order, while assigning
repeating unknown words identical tokens. The annotatfadh@ unknown words in the

target language is slightly more elaborate: (a) each unkrtavget word that is aligned to
an unknown source word is assigned the same unknown tokanghthe “copy” model)
and (b) an unknown target word that has no alignment or tredigeed with a known word
uses the special null tokamk .. See Figuré 3]2 for an example. This annotation enables
us to translate every non-null unknown token.

2When a source word has multiple translations, | use the latios with the highest probability. These
translation probabilities are estimated from the unsupedvalignment links. When constructing the dic-
tionary from these alignment links, | add a word pair to thetidhary only if its alignment count exceeds
100.
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en: Theunk portico inunk ...
frr Lepounk p ;unk p;dep. unk p ;...

Figure 3.3: Positional All Model — an example of the PosAll model. Each word is
followed by the relative positional tokempsg or the null tokerp. .

3.1.2 Positional All Model (PosAll)

The copyable model is limited by its inability to translateknown target words that are
aligned toknownwords in the source sentence, such as the pair of words,i¢pbdnd
“portique”, in my running example. The former word is known the source sentence;
whereas latter is not, so it is labelled witimk .. This happens often since the source
vocabularies of my models tend to be much larger than thetaarabulary since a large
source vocabulary is cheap. This limitation motivated uddeelop an annotation model
that includes the complete alignments between the soutéhanarget sentences, which
is straightforward to obtain since the complete alignman¢savailable at training time.

Speci cally, | return to using only a single universaik token. However, on the target
side, | insert a positional tokgny after every word. Hered indicates a relative position
(d= 7;:::; 1;0;1;:::;7) todenote that a target word at positjois aligned to a source
word at position = j  d. Aligned words that are too far apart are considered unatign
and unaligned words are annotated with a null toggn My annotation is illustrated in
Figure[3.3.

3.1.3 Positional Unknown Model (PosUnk)

The main weakness of the PosAll model is that it doubles thgtleof the target sentence.
This makes learning more dif cult and slows the speed of peater updates by a factor of
two. However, given that my post-processing step is comzbeomly with the alignments
of the unknown words, so it is more sensible to only annotag¢eunknown words. This

or ;) to simultaneously denote (a) the fact that a word is unknawad (b) its relative
positiond with respect to its aligned source word. Like the PosAll mpdease the symbol
unkpos . for unknown target words that do not have an alignment. | nseihiversalnk
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for all unknown tokens in the source language. See FiguféoB8ah annotated example.

en: Theunk portico inunk ...

fr. Le unkpos ; unkpos ; deunkpos ;...

Figure 3.4: Positional Unknown Model— an example of the PosUnk model: only aligned
unknown words are annotated with thiekpos 4 tokens.

It is possible that despite its slower speed, the PosAll iwdidearn better alignments
because it is trained on many more examples of words anddhghments. However, |
show that this is not the case (Sé£3.2).

3.2 Experiments

| evaluate the effectiveness of my OOV models on the WMT'14lish-to-French transla-
tion task. Translation quality is measured with the BLEU megPapineni et all, 2002) on
the newstest2014 test set (which has 3003 sentences).

3.2.1 Training Data

To be comparable with the results reported by previous workeural machine transla-
tion systems| (Sutskever et al., 2014; Cho et al., 2014; Bahdat al.| 2015), | train my
models on the same training data of 12M parallel sentene&M3I-rench and 304M En-
glish words), obtained from (Schwenk, 2014). The 12M subset selected from the full
WMT'14 parallel corpora using the method proposed in Axeled al. (2011).

Due to the computationally intensive nature of the naivensax, | limit the French
vocabulary (theaargetlanguage) to the either the 40K or the 80K most frequent Frenc
words. On thesourceside, | can afford a much larger vocabulary, so | use the 200Ktm
frequent English words. The model treats all other wordsésown

| annotate my training data using the three schemes deddnlibe previous section.
The alignment is computed with the Berkeley aligner (Liahglg2006) using its default

3When the French vocabulary has 40K words, there are on a¥@r&§ unknown words per sentence on
the target side of the test set.
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settings. | discard sentence pairs in which the source otaiget sentence exceed 100
tokens.

3.2.2 Training Details

My training procedure and hyperparameter choices are aintih those used by
Sutskever et all (2014). In more details, | train multi-lageep LSTMs, each of which
has 1000 cells, with 1000 dimensional embeddings. Likekeuts et al.|(2014), | reverse
the words in the source sentences which has been shown tovenp65TM memory uti-
lization and results in better translations of long sereendVly hyperparameters can be
summarized as follows: (a) the parameters are initializgtbumly in [-0.08, 0.08] for 4-
layer models and [-0.06, 0.06] for 6-layer models, (b) SGP &aked learning rate of 0.7,
(c) I train for 8 epochs (after 5 epochs, | begin to halve tlaerang rate every 0.5 epoch),
(d) the size of the mini-batch is 128, and (e) | rescale thenatized gradient to ensure that
its norm does not exceed|5 (Pascanu et al., 2013).

| also follow the GPU parallelization scheme proposed ingkever et al., 2014), al-
lowing us to reach a training speed of 5.4K words per secotrdito a depth-6 model with
200K source and 80K target vocabularies; whereas Sutskéewatr(2014) achieved 6.3K
words per second for a depth-4 models with 80K source anéttaggabularies. Training
takes about 10-14 days on an 8-GPU machine.

3.2.3 A note on BLEU scores

| report BLEU scores based on both: @@tokenizetranslations, i.e., WMT'14 style, to be
comparable with results reported on the WMT wellssted (b)tokenized translationso
as to be consistent with previous work (Cho etlal., 2014; Bahd et all, 2015%; Schwenk,
2014 Sutskever et al., 2014; Jean et al., ZOHSa).

The existing WMT'14 state-of-the-art system (Durrani €f/dD14) achieves a detok-
enized BLEU score of 35.8 on the newstest2014 test set folidbniyp French language

4http://matrix.statmt.org/matrix
SThetokenizer.perl andmulti-bleu.pl scripts are used to tokenize and score translations.
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pair (see Table_3l1). In terms of the tokenized BLEU, its @eniance is 37.0 points (see
Table[3.2).
System BLEU

Existing SOTA (Durrani et al., 2014) 35.8
Ensemble of 8 LSTMs + PosUnk 36.6

Table 3.1:Detokenized BLEU on newstest2014 translation results of the existing state-
of-the-art system and my best system.

3.2.4 Main Results

| compare my systems to others, including the then stateefrt MT system
(Durrani et al.| 2014), recent end-to-end neural systemjedl as phrase-based baselines
with neural components.

The results shown in Table 3.2 demonstrate that my unknowd ¥anslation tech-
nique (in particular, the PosUnk model) signi cantly impes the translation quality for
both the individual (non-ensemble) LSTM models and the e model@ For 40K-
word vocabularies, the performance gains are in the ran@e3e2.8 BLEU points. With
larger vocabularies (80K), the performance gains are dghed, but my technique can still
provide a nontrivial gains of 1.6-1.9 BLEU points.

It is interesting to observe that our approach is more udefuénsemble models as
compared to the individual ones. This is because the usfslof the PosUnk model
directly depends on the ability of the NMT to correctly logdr a given OQV target word,
its corresponding word in the source sentence. An ensenibl@ge models identi es
these source words with greater accuracy. This is why fosémee vocabulary size, better
models obtain a greater performance gain our post-praugs$ep. Except for the very
recent work of Jean et al. (2015a) that employs a similar ankntreatment strategyis

6 For the 40K-vocabulary ensemble, | combine 5 models witlydrsand 3 models with 6 layers. For the
80K-vocabulary ensemble, | combine 3 models with 4 layedssamodels with 6 layers. Two of the depth-6
models are regularized with dropout, similar to Zarembad.€P814) with the dropout probability set to 0.2.

"Their unknown replacement method and mine both track thagilmes of target unknown words and use
a word dictionary to post-process the translation. Howeter mechanism used to achieve the “tracking”
behavior is differentl_Jean etlal. (2015a)'s uses the abteait mechanism to track the origins of all target
words, not just the unknown ones. In contrast, | only focusracking unknown words using unsupervised
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System Vocab | Corpus | BLEU

State of the art in WMT'14 (Durrani et al., 2014) All 36M| 37.0
Standard MT + neural components

Schwenk (2014) — neural language model All 12M  33.3

Cho et al. (2014)— phrase table neural features All 12M 345

Sutskever et al. (2014) — 5 LSTMs, reranking 1000-best lists All 12M | 36.5
Existing end-to-end NMT systems
Bahdanau et al. (2015) — single gated RNN with search 30K 12M8.5 2
Sutskever et al. (2014) — 5 LSTMs 80K 12M  34.8
Jean et al. (2015a) — 8 gated RNNs with search + UNK replacem&00K 12mM | 37.2
My end-to-end NMT systems

Single LSTM with 4 layers 40K 12M | 29.5

Single LSTM with 4 layers + PosUnk 40K 12M|  31.8 (+2.3)
Single LSTM with 6 layers 40K 12M | 30.4

Single LSTM with 6 layers + PosUnk 40K 12M|  32.7 (+2.3)
Ensemble of 8 LSTMs 40K 12M | 341
Ensemble of 8 LSTMs + PosUnk 40K 12M  36.9 (+2.8)
Single LSTM with 6 layers 80K 36M | 31.5

Single LSTM with 6 layers + PosUnk 80K| 36M| 33.1(+1.6)
Ensemble of 8 LSTMs 80K 36M | 35.6
Ensemble of 8 LSTMs + PosUnk 80K 36M| 37.5 (+1.9)

Table 3.2: Tokenized BLEU on newstest2014- Translation results of various systems
which differ in terms of: (a) the architecture, (b) the siZe¢h®e vocabulary used, and (c)
the training corpus, either using the full WMT'14 corpus 6\ sentence pairs or a subset
of it with 12M pairs. | highlight the performance of my besstgm in bolded text and state
the improvements obtained by our technique of handlingwemels (namely, the PosUnk
model). Notice that, for a given vocabulary size, the moreueate systems achieve a
greater improvement from the post-processing step. Thikdscase because the more
accurate models are able to pin-point the origin of an unkneard with greater accuracy,
making the post-processing more useful.

mine, our best result of 37.5 BLEU outperforms all other NM§tems by a large margin,
and more importantly, our system has established a newderothe WMT'14 English to
French translation.

alignments. My method can be easily applied to any sequenseguence models since | treat any model as
a blackbox and manipulate only at the input and output levels
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3.3 Analysis

| analyze and quantify the improvement obtained by my raredwianslation approach
and provide a detailed comparison of the different rare wectiniques proposed in Sec-
tion[3.1. | also examine the effect of depth on the LSTM amgttiires and demonstrate a
strong correlation between perplexities and BLEU scoreasd highlight a few transla-
tion examples where my models succeed in correctly trangl@OV words, and present
several failures.

3.3.1 Rare Word Analysis

To analyze the effect of rare words on translation qualityfollow Sutskever et
al. (Sutskever et al., 2014) and sort sentences in new8testy the average inverse fre-
guency of their words. | split the test sentences into groupere the sentences within each
group have a comparable number of rare words and evaluategeaigp independently. |
evaluate my systems before and after translating the OO\dsvand compare with the
standard MT systems — | use the best system from the WMT'14esbifDurrani et al.,
2014), and neural MT systems — | use the ensemble systenrsaesin (Sutskever et al.,
2014) and Section5.3.

Rare word translation is challenging for neural machinadlaion systems as shown
in Figure[3.5. Speci cally, the translation quality of my uhel before applying the postpro-
cessing step is shown by the green curve, and the curreMibEssystem|(Sutskever et al.,
2014) is the purple curve. While (Sutskever etlal., 2014fpoes better translations for
sentences with frequent words (the left part of the graigy aire worse than best system
(red curve) on sentences with many rare words (the right sidbe graph). When ap-
plying my unknown word translation technique (purple ciyvesigni cantly improve the
translation quality of my NMT: for the last group of 500 semtes which have the greatest
proportion of OOV words in the test set, | increase the BLEbre®f my system by 4.8
BLEU points. Overall, my rare word translation model int@gies between the SOTA sys-
tem and the system of Sutskever et al. (2014), which allowts esitperform the winning
entry of WMT'14 on sentences that consist predominantlyedéient words and approach
its performance on sentences with many OOV words.
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32 |/ASOTA Durrani et al. (37.0) N\
<-Sutskever et al. (34.8) AN
301 Ours (35.6) \\
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Figure 3.5: Rare word translation — On the x-axis, | order newstest2014 sentences by
theiraverage frequency rardnd divide the sentences into groups of sentences with a com-
parable prevalence of rare words. | compute the BLEU scoeadt group independently.

3.3.2 Rare Word Models

| examine the effect of the different rare word models présgin Sectiorh_3]1, namely:
(a) Copyable— which aligns the unknown words on both the input and theetasgle by
learning to copy indices, (b) the Positional AHdsAIl) — which predicts the aligned source
positions for every target word, and (c) the Positional Uswkn (PosUnR — which predicts
the aligned source positions for only the unknown targe rit is also interesting to
measure the improvement obtained when no alignment infiome used during training.
As such, | include a baseline model with no alignment knogé&@®oAlign) in which
| simply assume that thg" unknown word on the target sentence is aligned toithe
unknown word in the source sentence.

From the results in Figute 3.6, a simple monotone alignm&sumaption for théloAlign

8n this section and in sectidn_3.8.3, all models are trainedhe unreversed sentences, and | use the
following hyperparameters: | initialize the parameterg§ammly in [-0.1, 0.1], the learning rate is 1, the
maximal gradient norm is 1, with a source vocabulary of 90kdspand a target vocabulary of 40k (see
Sectior 3.2.R2 for more details). While these LSTMs do noiex@hthe best possible performance, it is still
useful to analyze them.
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+2.2

+2.4

NoAlign (5.31) Copyable (5.38) PosAll (5.30, 1.37) PosUnk (5.32)

Figure 3.6:Rare word models— translation performance of 6-layer LSTMs: a model that
uses no alignmentNoAlign) and the other rare word modelS¢pyable, PosAll, PosUpk
For each model, | show results befotef{) and after fight) the rare word translation as
well as the perplexity (in parentheses). RarsAll | report the perplexities of predicting
the words and the positions.

model yields a modest gain of 0.8 BLEU points. If | train thedabto predict the align-

ment, then th&€€Copyablemodel offers a slightly better gain of 1.0 BLEU. Note, howeve
that English and French have similar word order structwrét, \would be interesting to ex-

periment with other language pairs, such as English andgskirin which the word order
is not as monotonic. These harder language pairs potgniiatily a smaller gain for the

NoAlign model and a larger gain for the Copyable model. | &gfor future work.

The positional modelsRosAllandPosUnR improve translation performance by more
than 2 BLEU points. This proves that the limitation of the galple model, which forces
it to align each unknown output word with an unknown input eas considerable. In
contrast, the positional models can align the unknown tampeds with any source word,
and as a result, post-processing has a much stronger effieetPosUnk model achieves
better translation results than the PosAll model which sstgthat it is easier to train the
LSTM on shorter sequences.
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3.3.3 Other Effects

Deep LSTM architecture — | compare PosUnk models trained with different number of
layers (3, 4, and 6). | observe that the gain obtained by tlsJRk model increases in
tandem with the overall accuracy of the model, which is cstesit with the idea that larger
models can point to the appropriate source word more aayratdditionally, | observe
that on average, each extra LSTM layer provides roughly 1L.BUBpoint improvement as
demonstrated in Figute 3.7.

Depth 3 (6.01) Depth 4 (5.71) Depth 6 (5.46)

Figure 3.7:Effect of depths— BLEU scores achieved lBosUnkmodels of various depths
(3, 4, and 6) before and after the rare word translation. déathat the PosUnk model is
more useful on more accurate models.

Perplexity and BLEU — Lastly, | nd it interesting to observe a strong correlatio
between the perplexity (my training objective) and the $tation quality as measured by
BLEU. Figure[3.8 shows the performance of a 4-layer LSTM, ok | compute both
perplexity and BLEU scores at different points during tragn |1 nd that on average, a
reduction of 0.5 perplexity gives us roughly 1.0 BLEU pomigrovement.

3.3.4 Sample Translations

| present three sample translations of my best system (WithBLEU) in Tablé 5.4. In my
rst example, the model translates all the unknown wordsexdty: 260Q orthopediques
andcataracte It is interesting to observe that the model can accuratedgipt an align-
ment of distances of 5 and 6 words. The second example highlige fact that my model
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26.5r
261
25.5¢
25¢
24.5¢
24r
23.5¢

BLEU

2§.6 5.8 6 6.2 6.4 6.6 6.8
Perplexity

Figure 3.8:Perplexity vs. BLEU — | show the correlation by evaluating an LSTM model
with 4 layers at various stages of training.

can translate long sentences reasonably well and that iablagto correctly translate the
unknown word forJPMorganat the very far end of the source sentence. Lastly, my exam-
ples also reveal several penalties incurred by my modelin(@yrect entries in the word
dictionary, as withhégociateurvs. traderin the second example, and (b) incorrect align-
ment prediction, such as whemkpos 3 is incorrectly aligned with the source wovehs

and not withabandoningwhich resulted in an incorrect translation in the thirdtsece.

3.4 Conclusion

| have shown that a simple alignment-based technique cagatatand even overcome
one of the main weaknesses of current NMT systems, whicteis itability to translate
words that are not in their vocabulary. A key advantage of ecpnique is the fact that it
is applicable to any NMT system and not only to the deep LSTMiehof Sutskever et al.
(2014). At the time of this work, in 2014-2015, a techniqle Imine is likely necessary if
an NMT system is to achieve state-of-the-art performanc@machine translation.

| have demonstrated empirically that on the WMT'14 Englisiench translation task,
my technique yields a consistent and substantial imprownewfeup to 2.8 BLEU points
over various NMT systems of different architectures. Magportantly, with 37.5 BLEU
points, | have established the rst NMT system that outperied the best MT system on a
WMT'14 contest dataset.
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Sentences

src | An additional 2600 operations includingorthopedic and cataract
surgery will help clear a backlog .

trans| En outre unkpos ; opérations supplémentaires , dont la chirurgie
unkpos s et launkpos ¢ , permettront de résorber I' arriéré .

+unk | En outre ,2600 opérations supplémentaires , dont la chirurgre
thopediqueset lacataracte, permettront de résorber I' arriéré .

tgt | 2600 opérations supplémentaires , notamment danerteithe de la
chirurgie orthopédique et de la cataracte , aiderontteayaer le retard .

src | Thistrader, RichardUsher, left RBS in2010and is understand to have
be given leave from his current position as European heaorex fspot
trading atJPMorgan.

trans| Ceunkpos o , Richardunkpos o , a quitteunkpos ; en 2010 et a
compris qu' il est autorisé a quitter son poste actuel en tae leader
européen du marché des points de ventard(pos s .

+unk | Cenégociateur, RichardUsher, a quitté RBS er2010et a compris qu'

il est autorisé a quitter son poste actuel en tant que leaul®péen du
marché des points de vente #®Morgan.

tgt | Ce trader, Richard Usher , a quitté RBS en 2010 et aet@itis sus-
pendu de son poste de responsable européen du trading guacdm
pour les devises chez JPMorgan

src | But concerns have grown after Miazangawas quoted as sayirigen-
amo wasabandoning the 1992 peace accord .

trans| Mais les inquiétudes se sont accrues apres quekpos ; a déclaré
gue launkpos 3 unkpos 3 I' accord de paix de 1992 .

+unk | Mais les inquiétudes se sont accrues apres quildtangaa déclaré
gue laRenamcetait|' accord de paix de 1992 .

tgt | Mais I' inquietude a grandi apres que M. Mazanga a délque la
Renamo abandonnait I' accord de paix de 1992 .

Table 3.3:Sample translations— the table shows the sourc&d) and the translations of
my best model beforetrns) and after unk) unknown word translations. | also show
the human translationggt) and italicize words that are involved in the unknown word
translation process.

| will now switch gear to address a different problem in NMfAat is the dif culty in
translating long sentences. However, | will return backh® topic of rare and unknown
words in Chapter 5 to present an even better treatment tptbbtlem.



Chapter 4
Attention Mechanisms

While I have demonstrated in the previous chapter that Nédmahine Translation (NMT)
can achieve state-of-the-art performance in large-scafesiation tasks such as from En-
glish to French, it is still challenging for NMT to handle lprsentences as observed by
Bahdanau et al. (2015). One effective way to address sudigunas through the attention
mechanism, which has gained popularity recently in trgmeural networks, allowing
models to learn alignments between different modalitiags, ®etween image objects and
agent actions in the dynamic control problem (Mnih et al14)Q between speech frames
and text in the speech recognition task (Chorowski et all420or between visual features
of a picture and its text description in the image captionegation task/(Xu et al., 2015).
In the context of NMT| Bahdanau et al. (2015) has succegségplied such attentional
mechanism to jointly translate and align words. To the béstyknowledge during the
time of this work, there has not been any other work explotirgguse of attention-based
architectures for NMT.

In this work, | design, with simplicity and effectivenessnmnd, two novel types of
attention-based models: ghobal approach in which all source words are attended and a
local one whereby only a subset of source words are considerednaéaThe former ap-
proach resembles the model of (Bahdanau et al.,2015) buhdes architecturally. The
latter can be viewed as an interesting blend betweerhéné and soft attention models
proposed inl(Xu et al., 2015): it is computationally lessengive than the global model

55
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X Y Z <eos>

A B C D <eos>X Y z

Figure 4.1:Neural machine translation— a stacking recurrent architecture for translating
a source sequenée B C Dinto atarget sequenceé Y Z Here,</s > marks the end of
a sentence.

or the soft attention; at the same time, unlike the hard atienthe local attention is dif-
ferentiable almost everywhere, making it easier to implenaad trailﬂ Besides, | also
examine various alignment functions for my attention-blasedels.

Following (Sutskever et al., 2014; Luong et al., 2015c), ¢ tise stacking LSTM ar-
chitecture for our NMT systems, as illustrated in Figure, 4ogether with the LSTM unit
de ned in (Zaremba et al., 2014). The experimental reswdtadnstrate that both of my ap-
proaches are effective in the WMT translation tasks betviagglish and German in both
directions. My attentional models yield a boost of up to SLEB over non-attentional sys-
tems which already incorporate known techniques such gedtoFor English to German
translation, | achieve new state-of-the-art (SOTA) residt both WMT'14 and WMT'15,
outperforming previous SOTA systems, backed by NMT modadisiagram LM rerankers,
by more than 1.0 BLEU. | conduct extensive analysis to evaluay models in terms of
learning, the ability to handle long sentences, choicedtehtional architectures, align-
ment quality, and translation outputs.

There is a recent work by Gregor ef al. (2015), which is vemilair to my local attention and applied
to the image generation task. However, as | detail later, mygehis much simpler and can achieve good
performance for NMT.



CHAPTER 4. ATTENTION MECHANISMS 57

4.1 Attention-based Models

Unlike the basic NMT systems (Kalchbrenner and Blunsom32&utskever et al., 2014;
Cho et al., 2014; Luong et al., 2015c), in which the sourceasgntation is only used once
to initialize the decoder hidden state, the idea of @tiention mechanismexplored in
(Bahdanau et al., 2015; Jean etal., 2015a) and this work psawide a “random access
memory” of source hidden states which one can constantr ttef as translation pro-
gresses. The various attention-based models propose&iwdhk can be classi ed into
two broad categoriegjobalandlocal. These classes differ in terms of whether the “atten-
tion” is placed on all source positions or on only a few soyositions. | illustrate these
two model types in Figurie 4.2 ahd 4.3 respectively.

Common to these two types of models is the fact that at eachdiept in the decoding
phase, both approaches rst take as input the hidden ktaét the top layer of a stacking
LSTM. The goal is then to derive a context vectprthat captures relevant source-side
information to help predict the current target wegyd While these models differ in how the
context vector; is derived, they share the same subsequent steps. Spécigiaken the
target hidden state; and the source-side context veatprl employ a simple concatenation
layer to combine the information from both vectors to praglaa attentional hidden state
as follows:

hy = tanh( W ¢[c¢; hy]) (4.1)

The attentional vectdt, is then fed through the softmax layer to produce the pradicti
distribution formulated as:

P(YtjY<t ; X) = softmax(W sh;) (4.2)
| now detail how each model type computes the source-sidexbvectorc;.

4.1.1 Global Attention

The idea of a global attentional model is to consider all titelén states of the encoder
when deriving the context vectoy. In this model type, a variable-length alignment vector
a;, whose size equals the number of time steps on the sourcessaived by comparing
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Attention Layer

Context vector |

Global align weights

Figure 4.2:Global attentional model — at each time stefy the model infers aariable-
lengthalignment weight vectoa; based on the current target stateand all source states
hs. A global context vectoc, is then computed as the weighted average, accordiag, to
over all the source states.

the current target hidden state with each source hidden stdte:

a¢(s) = align(h¢; hs) (4.3)
_ p &Xp scorefig; hy)
- ©€Xp scorefiy; ho)

Here,scoreis referred to as aontent-basedunction for which | consider three different

alternatives: 8
% hihs dot

scorefi;;hs)= _ hy W,hs general

" v tanh W,[h;hs] concat

In addition, in our early attempts to build attention-basealdels, | used docation-
basedfunction in which the alignment scores are computed fromnelgdhe target hidden
stateh, as follows:

a; = softmax(W 53hy) location (4.4)
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Given the alignment vector as weights, the context veGtes computed as the weighted
average over all the source hidden stgtes.

Comparison to (Bahdanau etlal., 2015Vhile our global attention approach is similar
in spirit to the model proposed by Bahdanau et al. (2015)ethee several key differences
which re ect how | have both simpli ed and generalized froimetoriginal model. First,
| simply use hidden states at the top LSTM layers in both theoéer and decoder as
illustrated in Figuré 4]2. Bahdanau et al. (2015), on theoliand, use the concatenation
of the forward and backward source hidden states in therbetional encoder and target
hidden states in their non-stacking uni-directional deco&econd, our computation path
is simpler; I go fromh; ! a;! c¢;! h;then make a prediction as detailed in Eq.{4.1),
Eq. (4.2), and Figure_4.2. On the other hand, at any tinBahdanau et all (2015) build
from the previous hidden statg ; ! a;! ¢! hy, which, in turn, goes through a
deep-output and a maxout layer before making predicHdmastly, Bahdanau et al. (2015)
only experimented with one alignment function, t@ncatproduct; whereas | show later
that the other alternatives are better.

4.1.2 Local Attention

The global attention has a drawback that it has to attend woatls on the source side for
each target word, which is expensive and can potentiallgeeit impractical to translate
longer sequences, e.g., paragraphs or documents. To addigsle ciency, | propose a
local attentional mechanism that chooses to focus only on a smiadlet of the source
positions per target word.

This model takes inspiration from the tradeoff betweengbft and hard attentional
models proposed hy Xu etlal. (2015) to tackle the image capmtémeration task. In their
work, soft attention refers to the global attention apphoacwhich weights are placed
“softly” over all patches in the source image. The hard diben on the other hand, selects
one patch of the image to attend to at a time. While less exyeas inference time, the
hard attention model is non-differentiable and requiresentomplicated techniques such

2Eq. [4.3) implies that all alignment vectaas are of the same length. For short sentences, | only use the
top part ofa; and for long sentences, | ignore words near the end.
31 will refer to this difference again in Sectién 4.11.3.
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m

Attention Layer

Context vector
Aligned position
P

Figure 4.3:Local attention model—the model rst predicts a single aligned positigrfor

the current target word. A window centered around the sopos#ionp, is then used to
compute a context vectoy, a weighted average of the source hidden states in the window
The weightsa, are inferred from the current target stéteand those source statkg in

the window.

as variance reduction or reinforcement learning to train.

My local attention mechanism selectively focuses on a smigtow of context and
is differentiable. This approach has an advantage of awgitlie expensive computation
incurred in the soft attention and at the same time, is e&sigain than the hard attention
approach. In concrete details, the model rst generatesigineal positiorp; for each target
word at timet. The context vectot; is then derived as a weighted average over the set of
source hidden states within the windfwv D; p;+ D]; D is empirically seIecteB.Unlike
the global approach, the local alignment veetpis now xed-dimensional, i.e2 R?®*.
| consider two variants of the model as below.

Monotonicalignment [ocal-m) — | simply setp, = t assuming that source and target
sequences are roughly monotonically aligned. The alignwestora; is de ned according

to Eq. @ZBE

4f the window crosses the sentence boundaries, | simplyragtiee outside part and consider words in
the window.
Slocal-mis the same as the global model except that the vegte xed-length and shorter.
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Predictivealignment [ocal-p) — instead of assuming monotonic alignments, our model
predicts an aligned position as follows:

p = S sigmoidv, tanh(Wh,)); (4.5)

W, andv, are the model parameters which will be learned to predicitipos. S is the
source sentence length. As a resulsigimoid p; 2 [0; S]. To favor alignment points near
p:, | place a Gaussian distribution centered aropndSpeci cally, our alignment weights
are now de ned as:

(s m)?

ai(s) = align(h¢; hs)exp %2 (4.6)

| use the samalign function as in Eq.[(4]3) and the standard deviation is ergiisi set as
— D

atnf

Comparison tol(Gregor et al., 2015)they have proposedselective attentiomech-

Note thatp, is areal number; whereas is anintegerwithin the window centered

anism, very similar to our local attention, for the image gration task. Their approach
allows the model to select an image patch of varying locasind zoom. |, instead, use
the same “zoom” for all target positions, which greatly sineg the formulation and still
achieves good performance.

4.1.3 Input-feeding Approach

In our proposed global and local approaches, the attentt@tasions are made indepen-
dently, which is suboptimal. Whereas, in standard M@pgerageset is often maintained
during the translation process to keep track of which sowaels have been translated.
Likewise, in attentional NMTs, alignment decisions shdaddmade jointly taking into ac-
count past alignment information. To address that, | prepasinput-feedingapproach

in which attentional vectors, are concatenated with inputs at the next time steps as il-
lustrated in Figuré 4]4. The effects of having such connections are two-fold: (a)pého

Slocal-pis similar to the local-m model except that | dynamically gartep; and use a truncated Gaussian
distribution to modify the original alignment weighatign(h; hs) as shown in Eq[{416). By utilizing; to
deriveat, | can compute backprop gradients W, andv,. This model is differentiable almost everywhere.

7If nis the number of LSTM cells, the input size of the rst LSTM kmyjis2n; those of subsequent layers
aren.
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X Y Z <eos>
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Attention Layer

A B C D <eos>X Y Z

Figure 4.4:Input-feeding approach — Attentional vector$i; are fed as inputs to the next
time steps to inform the model about past alignment decssion

to make the model fully aware of previous alignment choicas @) | create a very deep
network spanning both horizontally and vertically.

Comparison to other work Bahdanau et al. (2015) use context vectors, similar to our
Ct, in building subsequent hidden states, which can also aehtee “coverage” effect.
However, there has not been any analysis of whether suctectians are useful as done
in this work. Also, our approach is more general; as illustlan Figure 4.4, it can be
applied to general stacking recurrent architecturesydiol non-attentional models.

Xu et al. (2015) propose doubly attentionakpproach with an additional constraint
added to the training objective to make sure the model payaleagtention to all parts
of the image during the caption generation process. Suchstreant can also be useful
to capture the coverage set effect in NMT that | mentionetlezarHowever, | chose to
use the input-feeding approach since it provides exipifiir the model to decide on any
attentional constraints it deems suitable.
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4.2 EXxperiments

| evaluate the effectiveness of my models on the WMT traiwmsidisks between English
and German in both directions. newstest2013 (3000 sergerscased as a development
set to select my hyperparameters. Translation perfornsaaieereported in case-sensitive
BLEU (Papineni et al., 2002) on newstest2014 (2737 sens3racel newstest2015 (2169
sentences). Following (Luong et al., 2015c), | report t@nsn quality using two types
of BLEU: (a) tokenized BLEU to be comparable with existing NMT work and (R)S
BLEU to be comparable with WMT results.

System Ppl BLEU
Winning WMT'14 system phrase-based + large LNBuck et al., 2014) 20.7
Existing NMT systems
RNNsearch (Jean et al., 2015a) 16.5
RNNsearch + unk replace (Jean et al., 2015a) 19.0
RNNsearch + unk replace + large vocakrsembl@& models (Jean et al., 2015g) 21.6
My NMT systems
Base 10.6 11.3
Base + reverse 9.9| 12.6 ¢1.3)
Base + reverse + dropout 8.1| 14.0¢1.4
" Base + reverse + dropout + giobal attentitocation) | 73] 16.8¢2.8)
Base + reverse + dropout + global attentitocation) + feed input 6.4 18.1#1.3)
Base + reverse + dropout + local-p attentigerfera) + feed input i *5*9* 1 19.0 ¢0.9)
Base + reverse + dropout + local-p attentigerfera) + feed input + unk replace 20.91.9)
Ensemblé models + unk replace - | 23.0@¢2.1)

Table 4.1:WMT'14 English-German results — shown are the perplexities (ppl) and the
tokenizedBLEU scores of various systems on newstest2014. | hightighbest system

in bold and giveprogressivamprovements in italic between consecutive systelosal-p
referes to the local attention with predictive alignmemtadicate for each attention model
the alignment score function used in parentheses.

4.2.1 Training Details

All my models are trained on the WMT'14 training data consigiof 4.5M sentences pairs
(116M English words, 110M German words). Similar to (Jeaaliet2015a), | limit my

8All texts are tokenized withtokenizer.perl and BLEU scores are computed with
multi-bleu.perl
Swith themteval-vli3a script as per WMT guideline.
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vocabularies to be the top 50K most frequent words for batgdages. Words not in these
shortlisted vocabularies are converted into a universane unk > .

When training my NMT systems, following (Bahdanau et al12QJean et al., 2015a),
| Iter out sentence pairs whose lengths exceed 50 words &odles mini-batches as |
proceed. My stacking LSTM models have 4 layers, each with01€é€lls, and 1000-
dimensional embeddings. | follow (Sutskever etlal., 2014brhg et al., 2015c) in training
NMT with similar settings: (a) my parameters are uniformiitialized in[ 0:1; 0:1], (b)
| train for 10 epochs using plain SGD, (c) a simple learning schedule is employed —
| start with a learning rate of 1; after 5 epochs, | begin tovbahe learning rate every
epoch, (d) my mini-batch size is 128, and (e) the normalizadignt is rescaled whenever
its norm exceeds 5. Additionally, | also use dropout withiqadoility 0:2 for my LSTMs
as suggested by (Zaremba etlal., 2014). For dropout modedsn for 12 epochs and start
halving the learning rate after 8 epochs. For local attentmdels, | empirically set the
window sizeD = 10. My code is implemented in MATLAB. When running on a single
GPU device Tesla K40, | achieve a speed oftaKjetwords per second. It takes 7-10 days
to completely train a model.

4.2.2 English-German Results

| compare my NMT systems in the English-German task withotegiother systems. These
include the winning system in WMT'14 (Buck et'al., 2014), agdge-based system whose
language models were trained on a huge monolingual tex€dinemon Crawl corpus. For
end-to-end NMT systems, to the best of my knowledge, (Jeah,£2015a) is the only
work experimenting with this language pair and currently 8OTA system. | only present
results for some of my attention models and will later analye rest in Sectidn 5.4.

As shown in Tablé_4]1, | achieve progressive improvementsnafa) reversing the
source sentence 113 BLEU, as proposed in (Sutskever et al., 2014) and (b) usiogalrt,
+1:4 BLEU. On top of that, (c) the global attention approach gigesigni cant boost
of +2:8 BLEU, making my model slightly better than the base atter@iosystem of
Bahdanau et al| (2015) (roRNNSearch When (d) using thenput-feedingapproach, |
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seize another notable gain of:8 BLEU and outperform their system. The local atten-
tion model with predictive alignments (rolecal-p) proves to be even better, giving us a
further improvement of 8:9 BLEU on top of the global attention model. It is interesting
to observe the trend previously reportedlin (Luong et alL5&) that perplexity strongly
correlates with translation quality. In total, | achievegnscant gain of 5.0 BLEU points
over the non-attentional baseline, which already incluaesvn techniques such as source
reversing and dropout.

The unknown replacement technique proposed in (Luong,&CGl5¢| Jean et al., 2015a)
yields another nice gain of+9 BLEU, demonstrating that my attentional models do learn
useful alignments for unknown works. Finally, by ensemipléhdifferent models of vari-
ous settings, e.g., using different attention approachkitis and without dropout etc., | was
able to achieve aew SOTAesult of23.0 BLEU, outperforming the existing best system
(Jean et all, 2015a) byl# BLEU.

System BLEU
Top —NMT + 5-gram rerankMontreal) | 24.9
My ensemble 8 models + unk replace| 25.9

Table 4.2:WMT'15 English-German results — NISTBLEU scores of the winning entry
in WMT'15 and my best one on newstest2015.

Latest results in WMT'15- despite the fact that my models were trained on WMT'14
with slightly less data, | test them on newstest2015 to destmate that they can generalize
well to different test sets. As shown in Tablel4.2, my besteaysestablishes mew SOTA
performance 025.9 BLEU, outperforming the existing best system backed by NMd@ a
5-gram LM reranker by 0 BLEU.

4.2.3 German-English Results

| carry out a similar set of experiments for the WMT'15 traatgdn task from German to
English. While my systems have not yet matched the perfocmahthe SOTA system, |
nevertheless show the effectiveness of my approaches avgk bnd progressive gains in
terms of BLEU as illustrated in Table 4.3. Th#entionalmechanism gives us22 BLEU
gain and on top of that, | obtain another boost of up 1MBLEU from theinput-feeding
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System | Ppl.| BLEU
WMT'15 systems
SOTA —phrase-base@Edinburgh) 29.2
NMT + 5-gram rerank (MILA) 27.6
My NMT systems
Base (reverse) 14.3 16.9

" +global (ocation) 12.7( 19.1¢2.2)
+ global (ocation) + feed 10.9] 20.11.0)

"+ global dot) + drop + feed | _9_7_ 22.8@2.7)
+ global dot) + drop + feed + unk| ™ 24.912.1)

Table 4.3:WMT'15 German-English results — performances of various systems (similar
to Table[4.11). Thérasesystem already includes source reversing on which Iglddal
attention dropout, inputfeedng, andunkreplacement.

approach. Using a better alignment function, the contastddot product one, together

with dropoutyields another gain of 227 BLEU. Lastly, when applying the unknown word
replacement technique, | seize an additiorall+BLEU, demonstrating the usefulness of
attention in aligning rare words.

4.3 Analysis

| conduct extensive analysis to better understand my madedsms of learning, the ability
to handle long sentences, choices of attentional archiest and alignment quality. All
results reported here are on English-German newstest2014.

4.3.1 Learning curves

| compare models built on top of one another as listed in Tddlelt is pleasant to observe
in Figurel4.5 a clear separation between non-attentiortbattentional models. The input-
feeding approach and the local attention model also demadasheir abilities in driving the

test costs lower. The non-attentional model with dropdug filue + curve) learns slower
than other non-dropout models, but as time goes by, it besonwe robust in terms of
minimizing test errors.
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©basic

‘\ basic+reverse
5 +basic+reverse+dropout
basic+reverse+dropout+globalAttn
Abasic+reverse+dropout+globalAttn+feedinput
*basic+reverse+dropout+plLocalAttn+feedinput

Test cost
£
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Figure 4.5: Learning curves — test cost Ifi perplexity) on newstest2014 for English-
German NMTs as training progresses.

4.3.2 Effects of Translating Long Sentences

| follow (Bahdanau et al., 2015) to group sentences of sinelagths together and compute
a BLEU score per group. Figure 4.6 shows that my attentioralets are more effective
than the non-attentional one in handling long sentencesqgtlality does not degrade as

sentences become longer. My best model (the blue + curvpedatms all other systems
in all length buckets.

25

©ours, no attn (BLEU 13.9)
sours, local-p attn (BLEU 20.9)
+ours, best system (BLEU 23.0)

2 WMT'14 best (BLEU 20.7)
@ AJeans et al., 2015 (BLEU 21.6)
10

10 20 30 40 50

60 70
Sent Lengths

Figure 4.6:Length Analysis — translation qualities of different systems as sentenees b
come longer.
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BLEU

System Ppl Before | After unk
global (location) 6.4 18.1| 19.3(+1.2)
global (dot) 6.1f 18.6| 20.5(+1.9)
global (general) 6.1 17.3] 19.1(+1.8)
local-m (dot) >7.0 X X
local-m (general 6.2 18.6| 20.4(+1.8)
local-p (dot) 6.6) 18.0| 19.6(+1.9)

local-p (general)| 5.9 19 20.9 (+1.9)

Table 4.4: Attentional Architectures — performances of different attentional models. |
trained two local-m (dot) models; both have ppl7:0.

4.3.3 Choices of Attentional Architectures

| examine different attention modelgl¢bal, local-m, local-p and different alignment
functions (ocation, dot, general, concpts described in Sectién 4.1. Due to limited re-
sources, | cannot run all the possible combinations. Howegsults in Tablé 414 do give
us some idea about different choices. Tbeation-basedunction does not learn good
alignments: theglobal (location)model can only obtain a small gain when performing
unknown word replacement compared to using other alignrliumm:ltion For content-
basedfunctions, my implementationoncatdoes not yield good performances and more
analysis should be done to understand the re@dnis interesting to observe thalot
works well for the global attention angkeneralis better for the local attention. Among
the different models, the local attention model with prédecalignmentslpcal-p) is best,
both in terms of perplexities and BLEU.

0There is a subtle difference in how I retrieve alignmentstihar different alignment functions. At time
stept in which | receivey; 1 as inputand then compulte; a;; c;, andn; before predicting;, the alignment
vectora; is used as alignment weights for (a) the predicted weiid thelocation-basedlignment functions
and (b) the input worg; 1 in thecontent-baseélinctions.

1with concat the perplexities achieved by different models are 6.7kl 7.1 (local-m), and 7.1 (local-
p). Such high perplexities could be due to the fact that | $ifsnfhe matrixW , to set the part that corresponds
to hs to identity.
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Method AER
global (location) 0:39
local-m (general) 0:34
local-p (general) 0:36

ensemble 0:34
Berkeley Aligner 0:32

Table 4.5:AER scores— results of various models on the RWTH English-German align
ment data.

4.3.4 Alignment Quality

A by-product of attentional models are word alignments. M/(Bahdanau et al., 2015)
visualized alignments for some sample sentences and @aksgans in translation quality
as an indication of a working attention model, no work hagsssd the alignments learned
as awhole. In contrast, | set out to evaluate the alignmeatitgusing the alignment error
rate (AER) metric.

Given the gold alignment data provided by RWTH for 508 Englizerman Europarl
sentences, | “force” decode my attentional models to predtanslations that match the
references. | extract only one-to-one alignments by selgt¢he source word with the
highest alignment weight per target word. Neverthelesshawsn in Tablé 415, | was able
to achieve AER scores comparable to the one-to-many aligtedtained by the Berkeley
aligner (Liang et all, 200

| also found that the alignments produced by local attentiodels achieve lower AERs
than those of the global one. The AER obtained by the ensenvhiée good, is not better
than the local-m AER, suggesting the well-known observatiat AER and translation
scores are not well correlated (Fraser and Marcu,|2007).

4.3.5 Alignment Visualization

| visualize the alignment weights produced by my differdteration models in Figure 4.7.
The visualization of the local attention model is much skatpan that of the global one.
This contrast matches my expectation that local attensaesigned to only focus on a

12| concatenate the 508 sentence pairs with 1M sentence painsWMT and run the Berkeley aligner.
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Figure 4.7:Alignment visualizations— shown are images of the attention weights learned
by various models: (top left) global, (top right) local-nmca(bottom left) local-p. Theold
alignments are displayed at the bottom right corner.

subset of words each time. Also, since | translate from Bhgio German and reverse
the source English sentence, the white strides at the wordbty” and“” in the global
attention model reveals an interesting access pattermnadistto refer back to the beginning
of the source sequence.

Compared to the alignment visualizations in_(Bahdanau.gP8l5), my alignment
patterns are not as sharp as theirs. Such difference couglsilghp be due to the fact
that translating from English to German is harder than tedimg into French as done
in (Bahdanau et al., 2015), which is an interesting pointanane in future work.



CHAPTER 4. ATTENTION MECHANISMS 71

4.3.6 Sample Translations

| show in Tabld. 5.4 sample translations in both directiorist appealing to observe the
effect of attentional models in correctly translating nanseich as “Miranda Kerr” and
“Roger Dow”. Non-attentional models, while producing sefesnames from a language
model perspective, lack the direct connections from thecgoside to make correct transla-
tions. | also observed an interesting case in the second@gawhich requires translating
the doubly-negategbhrase, “not incompatible”. The attentional model cotlgeptoduces
“nicht ::: unvereinbar”; whereas the non-attentional model generaiieht vereinbar”,
meaning “not compatibl The attentional model also demonstrates its superiority in
translating long sentences as in the last example.

4.4 Conclusion

In this chapter, | propose two simple and effective atterionechanisms for neural ma-
chine translation: thglobal approach which always looks at all source positions and the
local one that only attends to a subset of source positions at a titest the effectiveness
of my models in the WMT translation tasks between English @edman in both direc-
tions. My local attention yields large gains of up3® BLEU over non-attentional models
that already incorporate known techniques such as drogémt.the English to German
translation direction, my ensemble model has establisleed state-of-the-art results for
both WMT'14 and WMT'15.

| have compared various alignment functions and shed lighivbich functions are
best for which attentional models. My analysis shows thindéibn-based NMT models
are superior to non-attentional ones in many cases, for pbeam translating names and
handling long sentences.

13The reference uses a more fancy translation of “incomptibvhich is “im Widerspruch zu etwas
stehen”. Both models, however, failed to translate “pagseaxperience”.
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English-German translations

src | Orlando Bloom and Miranda Kerr still love each other

ref | Orlando Bloom undMiranda Kerrlieben sich noch immer

best | Orlando Bloom undvliranda Kerr lieben einander noch immer .

base| Orlando Bloom unducas Miranda lieben einander noch immer .

src | “WeYre pleased the FAA recognizes that an enjoyable passengerience is not incom-
patible with safety and security%said Roger Dow , CEO of the U.S. Travel Association

ref | “ Wir freuen uns, dass die FAA erkennt , dass ein angenslitassagiererlebnis nicht im
Widerspruch zur Sicherheit steht ", saggeger Dow, CEO der U.S. Travel Association

best | ®Wir freuen uns , dass die FAA anerkennt , dass ein angenelstasht mit Sicherheit
und Sicherheitinvereinbaiist °°, sagteRoger Dow, CEO der US - die .

base| “Wir freuen uns tiber die unk> , dass eir< unk> < unk> mit Sicherheit nichtereinbar
ist mit Sicherheit und Sicherhé®}, sagteRogerCameron, CEO der US < unk> .

German-English translations

src | In einem Interview sagte Bloom jedoch , dass er und Kelrsoch immer lieben .
ref | However, in an interview , Bloom has said that he ed still love each other .
best| In an interview , however , Bloom said that he dftelr still love .

base, However, in an interview , Bloom said that he &imch were still<unk> .

src | Wegen der von Berlin und der Europaischen Zentralbarkangten strengen Sparpolitik
in Verbindung mit der Zwangsjacke , in die die jeweilige natile Wirtschaft durch das
Festhalten an der gemeinsamen Wahrung genotigt wird veithe Menschen der Ansicht

, das Projekt Europa sei zu weit gegangen

ref | Theausterity imposed by Berlin and the European Central Bardupted with the strait-
jacketimposed on national economies through adherence to the oaroorrency , has
led many people to think Project Europe has gone too far .

best| Because of the striciusterity measures imposed by Berlin and the European &lentr
Bank in connection with the straitjackat which the respective national economy is
forced to adhere to the common currency , many people belwtéhe European project
has gone too far .

base| Because of the pressumposed by the European Central Bank and the Federal Cen-
tral Bank with the strict austerity imposed on the national economy in the face of the
single currency , many people believe that the Europeargirbps gone too far .

Table 4.6: Sample translations— for each example, | show the soursec], the human
translation (ef), the translation from my best moddigs), and the translation of a non-
attentional modell{asg. | italicize somecorrecttranslation segments and highlight a few
wrong ones in bold.



Chapter 5

Hybrid Models

In the previous chapters, | showed that despite being velgthew, NMT has already
achieved state-of-the-art translation results for sévarsguage pairs such as English-
French ((Luong et al., 2015c), English-German_(Jean!et 8015&; Luong et al., 2015b;
Luong and Manning, 2015), and English-Czech (Jean/et al520 While NMT offers
many advantages over traditional phrase-based apprqasings as small memory foot-
print and simple decoder implementation, nearly all presioork in NMT has used quite
restricted vocabularies, crudely treating all other wadits same with arc unk > sym-
bol. Sometimes, a post-processing step that patches inowmkwords is introduced to
alleviate this problem. In Chapter 3, | propose to annotateiogences of target unk >
with positional information to track their alignments, eftvhich simple word dictionary
lookup or identity copy can be performed to replaaenk > in the translation. Jean et/al.
(20154a) approach the problem similarly but obtain the afignts for unknown words from
the attention mechanism. | refer to these asutile replacemenrtechnique.

Though simple, these approaches ignore several importapegies of languages.
First, monolingually words are morphologically related; however, they areenitty treated
as independent entities. This is problematic as pointedbpuiuong et al.[(2013): neural
networks can learn good representations for frequent wards as “distinct”, but fail for
rare-but-related words like “distinctiveness”. Secoasslingually languages have dif-
ferent alphabets, so one cannot na'vely memorize all plessurface word translations
such as name transliteration between “Christopher” (Bhgand “Krystof” (Czech). See

73



CHAPTER 5. HYBRID MODELS 74

un\<unk> chat

un <unk> chat

cute _

Figure 5.1: Hybrid NMT - example of a word-character model for translating “a cute
cat” into “un joli chat”. Hybrid NMT translates at the wordvel. For rare tokens, the

character-level components build source representatindsecover target unk >. “_
marks sequence boundaries.
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more on this problem in (Sennrich et al., 2016b).

To overcome these shortcomings, | propose a nbybtid architecture for NMT that
translates mostly at the word level and consults the characimponents for rare words
when necessary. As illustrated in Figlirel5.1, my hybrid nhadesists of a word-based
NMT that performs most of the translation job, except for twe (hypothetically) rare
words, “cute” and “joli”, that are handled separately. Oa sburceside, representations
for rare words, “cute”, are computed on-the- y using a deegurrent neural network that
operates at the character level. On thgyetside, | have a separate model that recovers
the surface forms, “joli”, ok unk > tokens character-by-character. These components are
learned jointly end-to-end, removing the need for a sepawak replacement step as in
current NMT practice.

My hybrid NMT offers a twofold advantage: it is much fastedagasier to train than
character-based models; at the same time, it never prodné@®wn words as in the case
of word-based ones. | demonstrate at scale that on the WIVHHdish to Czech transla-
tion task, such a hybrid approach provides an additionasboib+2:1 11:4 BLEU points
over models that already handle unknown words. | achievenastate-of-the-art result
with 20:7 BLEU score. My analysis demonstrates that my character le@d@ success-
fully learn to not only generate well-formed words for Czgatighly-in ected language
with a very complex vocabulary, but also build correct repraations for English source
words.

5.1 Related Work

There has been a recent line of work on end-to-end charbatsd neural models which
achieve good results for part-of-speech tagding (dos Samtd Zadrozny, 2014; Ling etlal.,
2015a), dependency parsing (Ballesteros et al.,|2015)leessi cation (Zhang et al., 2015),
speech recognition (Chan et al., 2016; Bahdanaul et al.,l0H6d language modeling
(Kim et all, 2016; Jozefowicz et al., 2016). However, at theetof this work, success has
not been shown for cross-lingual tasks such as machindatanms| Sennrich et al. (2016b)
propose to segment words into smaller units and translatdike at the word level, which
does not learn to understand relationships among words.
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My work takes inspiration from (Luong etal., 2013) and (Leét|2015). Similar to
the former, | build representations for rare words on-tlggrom subword units. However,
instead of using recursive neural networks with morphensesrats as inl(Luong et al.,
2013), which requires existence of a morphological anajyzagilize recurrent neural net-
works with characters as the basic units. In comparison (itkt all,|2015), my hybrid
architecture is also a hierarchical sequence-to-sequandel, but operates at a different
granularity level, word-character. In contrast, Li et 2015) build hierarchical models at
the sentence-word level for paragraphs and documents.

5.2 Hybrid Neural Machine Translation

My hybrid architecture, illustrated in Figure 5.1, leveeaghe power of both words and
characters to achieve the goal of open vocabulary NMT. Tihe abthe design is avord-
level NMT with the advantage of being fast and easy to traine dharactercomponents
empower the word-level system with the abilities to computg source word representa-
tion on the y from characters and to recover character-bgracter unknown target words
originally produced as unk > .

5.2.1 Word-based Translation as a Backbone

The core of my hybrid NMT is a deep LSTM encoder-decoder tteatdlates at thevord
level as described in Chaptfer 2. | maintain a vocabularyv/gffrequent words for each
language. Other words notinside these lists are represbpi@ universal symbet unk >,
one per language. | translate just like a word-based NMTesyswith respect to these
source and target vocabularies, except for cases thatvewalnk > in the source input
or the target output. These correspond to the charactel-tsmponents illustrated in
Figure[5.1. A nice property of my hybrid approach is that bgyireg the vocabulary size,
one can control how much to blend the word- and charactereba®dels; hence, taking
the best of both worlds.
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5.2.2 Source Character-based Representation

In regular word-based NMT, for all rare words outside thersewocabulary, one feeds
the universal embedding representiignk > as input to the encoder. This is problematic
because it discards valuable information about the souacd.\Wio x that, | learn a deep
LSTM model over characters of source words. For exampleigarE[5.1, | run my deep
character-based LSTM over ‘¢, "u', t', e, and' (the boundary symbol). The nal
hidden state at the top layer will be used as the on-the- yasentation for the current rare
word. The layers of the deep character-based LSTM are alindigized with zerostates.
One might propose to connect hidden states of the word-hsSE#l to the character-based
model; however, | chose this design for various reasonst,Risimpli es the architecture.
Second, it allows for ef ciency througprecomputation before each mini-batch, | can
compute representations for rare source words all at onténsdances of the same word

share the same embedding, so the computation ig/p

5.2.3 Target Character-level Generation

General word-based NMT allows generation<aink > in the target output. Afterwards,
there is usually a post-processing step that handles thds®wn tokens by utilizing the
alignment information derived from the attention mechamand then performing simple
word dictionary lookup or identity copy (Luong et al., 201 5kean et all, 2015a). While
this approach works, it suffers from various problems schlphabet mismatches between
the source and target vocabularies and multi-word alignsnely goal is to address all
these issues and create a coherent framework that handledimiited output vocabulary.
My solution is to have a separate deep LSTM that “translasééghe character level
given the current word-level state. | train my system suct twhenever the word-level
NMT produces ar unk >, | can consult this character-level decoder to recover tinect
surface form of the unknown target word. This is illustrabedrigure[5.1. The training

twhile [Ling et al. (2015b) found that it is slow and dif cult twain source character-level models and
had to resort to pretraining, | demonstrate later that | caim imy deep character-level LSTM perfectly ne
in an end-to-end fashion.
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Context
vector

a cute cat _ un

Figure 5.2:Attention mechanism— shown are the two steps of the attention mechanism
| described in Chaptér 4 (Luong et al., 2015b): rst, compat®ntext vector, based on

the context vector as an additional input to derivedttentionalvectorh;.
objective for the hybrid models consists of two components:
J=Jy+ J¢ (5.1)

Here,J,, refers to the usual loss of the word-level NMT; in my examiilis, the sum of the
negative log likelihood of generatirfdun”, “ <unk >", “chat”, “ _"g. The remaining com-
ponent]. corresponds to the loss incurred by the character-levelddrovhen predicting
characters, e.gf,j', ‘o', I, ", _'g, of those rare words not in the target vocabulary.

Hidden-state Initialization  Unlike the source character-based representations, \ahéch
context-independent, the target character-level gepneratquires the current word-level
context to produce meaningful translation. This brings npgrmaportant question about
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what can best represent the current context so as to inéitlie character-level decoder. |
answer this question in the context of the attention medmawiescribed in Chapter 4.

The nal vector iy, just before the softmax as shown in Figlrel 5.2, seems to be a
good candidate to initialize the character-level decoddre reason is thdl; combines
information from both the context vectoy and the top-level recurrent stdte. | refer to it
later in my experiments as tlsame-patharget generation approach.

On the other hand, the same-path approach worries us bealhwsetorsh; used to
seed the character-level decoder might have similar valeading to the same charac-
ter sequence being produced. The reason is bedausedirectly used in the softmax,
Eq. (2.6), to predict the sameunk >. That might pose some challenges for the model
to learn useful representations that can be used to accshmtpld tasks at the same time,
that is to predick unk > and to generate character sequences. To address thatrgdncer
propose another approach called separate-patliarget generation.

My separate-path target generation approach works asM®lld mimic the process
described in EqL(4]1) of the attention mechanism to creataiaterpart vectdn; that will
be used to seed the character-level decoder:

hy = tanh( W [c¢; hy]) (5.2)

Here, W is a new learnable parameter matrix, with which | hope toast&V from
the pressure of having to extract information relevant tthidbe word- and character-
generation processes. This approach is illustrated inr€igB. Only the hidden state of
the rst layer is initialized as discussed above. The otlmnponents in the character-level
decoder such as the LSTM cells of all layers and the hiddeesstd higher layers, all start
with zero values.

Implementation-wise, the computation in the characteelldecoder is done per word
tokeninstead of petypeas in the source character componeftZ.2). This is because of
the context-dependent nature of the decdder.

2To be memory ef cient, the character-level backward passtzaexecuted right after the character-level
forward pass and we can split these computations into natdkes if the number 6f unk > is large.
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Context
vector

Attention Layer

Figure 5.3:Separate-path target generation- two separate attentional vectors are creat-
ing: h; for predicting target words ant; to seed the target-side character model.
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Word-Character Generation Strategy With the character-level decoder, we can view
the nal hidden states as representations for the surfansadmf unknown tokens and
could have fed these to the next time step. However, | chos®mo so for the ef ciency
reason explained next; insteadyunk > is fed to the word-level decoder “as is” using its
corresponding word embedding. Duritrgining, this design choice decouples all execu-
tions over<unk > instances of the character-level decoder as soon the woed{NMT
completes. As such, the forward and backward passes of #raatbr-level decoder over
rare words can be invoked in batch mode.tédttime, my strategy is to rst run a beam
search decoder at the word level to nd the best translatiypven by the word-level NMT.
Such translations containsunk > tokens, so | utilize the character-level decoder with
beam search to generate actual words for tkasek > .

5.3 Experiments

| evaluate the effectiveness of my models on the publiclylalvee WMT'15 translation
task from English into Czech withewstest201@000 sentences) as a development set and
newstest201%52656 sentences) as a test set. Two metrics are used: cestveeNIST
BLEU (Papineni et all, 2002) and chrfPopovic 2015@.The latter measures the amounts
of overlapping character-grams and has been argued to be a better metric for traoslati
tasks out of English.

5.3.1 Data

Among the available language pairs in WMT'15, all involviggpglish, | chooseCzech
as a target language for several reasons. First and fore@psth is a Slavic language
with not only rich and complex in ection, but also fusionabnphology in which a single
morpheme can encode multiple grammatical, syntactic,roaséic meanings. As a result,
Czech possesses an enormously large vocabulary (abouwt 2 #mes bigger than that of
English according to statistics in Taldle’5.1) and is a chajlileg language to translate into.

3For NIST BLEU, | rst run detokenizer.pl and then usenteval-vl3a to compute the scores as
per WMT guideline. For chr; | utilize the implementation helrgtps://github.com/rsennrich/
subword-nmt .


https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
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English Czech
word | char word |  char
# Sents 15.8M

# Types | 1,172 2003| 1,760 2053
200-char 98.1% 98.8%

Table 5.1:.WMT'15 English-Czech data— shown are various statistics of my training data
such asentencgtoken(word and character counts), as welltgge(sizes of the word and
character vocabularies). | show in addition the amount afd&@n a vocabulary expressed
by a list of 200 characters found in frequent words.

Furthermore, this language pair has a large amount of trgidata, so | can evaluate at
scale. Lastly, though my techniques are language indepgnitiées easier for us to work
with Czech since Czech uses the Latin alphabet with someititac

In terms of preprocessing, | apply only the standard tolsion practic@ | choose
for each language a list of 200 characters found in frequemtisy which, as shown in
Table[5.1, can represent more than 98% of the vocabulary.

5.3.2 Training Details

| train three types of systems, purelyord-based purely character-basedand hybrid.
Common to these architectures is a word-based NMT sincehthracter-based systems
are essentially word-based ones with longer sequenceshantbte of hybrid models is
also a word-based NMT.

In training word-based NMT, | proceed as in Chapter 4 (Luonglle 2015b) to use
the global attention mechanism together with similar hppeameters: (a) deep LSTM
models, 4 layers, 1024 cells, and 1024-dimensional emhgdd(b) uniform initialization
of parametersifp 0:1; 0:1], (c) 6-epoch training with plain SGD and a simple learnirtg ra
schedule — start with a learning ratelo®; after 4 epochs, halve the learning rate every 0.5
epoch, (d) mini-batches are of size 128 and shuf ed, (e) tlaglignt is rescaled whenever
its norm exceeds 5, and (f) dropout is used with probabiliB/according tol(Pham et al.,
2014). I now detail differences across the three architestu

4] usetokenizer.perl in Moses with default settings.
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System Vocab F\;\?rplex;ty BLEU | chrF;
(a) | Best WMT'15, big data (Bojar and Tamchyna, 201p) - - - 18.8 -
ExistingNMT
(b) | RNNsearch + unk replace (Jean et al., 2015b) 200K | - - 16.7 -
(c) | Ensemble4 models + unk replace (Jean et al., 2015b) 200K | - - 18.3 -
My word-based\NMT
(d) | Base + attention + unk replace 50k 5.9 1 17\5 42.4
(e) | Ensemble4 models + unk replace 50K - - 18.4 43.9
My character-basetMT

() | Base-512 (600-step backprop) 200 - 2|4 3.8 25.9

(g) | Base-512 + attention (600-step backprop) 200 - 1.6 17.896.6

(h) | Base-1024 + attention (300-step backprop) | 200 [ - 19 1411

My hybrid NMT

(i) | Base + attention + same-path 10 49 17 141 37.2

() | Base + attention + separate-path 10 49 17 15.6 39.6

(k) | Base + attention + separate-path + 2-layer char 10K |(4.76 |1.17.7 | 44.1
() | Base + attention + separate-path + 2-layer char | 50K [5.76 [1.19.6 | 46.5

(m) | Ensemble4 models 50K - - 20.7 | 475

Table 5.2.WMT'15 English-Czech results— shown are the vocabulary sizes, perplexities,
BLEU, and chrk scores of various systems arwstest2015Perplexities are listed under
two categories, word (w) and character (dest and important results per metric are
highlighted.
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Word-based NMT — | constrain my source and target sequences to have a maximum
length of 50 each; words that go past the boundary are igndteslvocabularies are limited
to the topjVj most frequent words in both languages. Words not in thesabtdaries are
converted inte unk > . After translating, | will perform dictionaHAookup or identity copy
for <unk > using the alignment information from the attention mod&sch a procedure
is referred to as thenk replacegechnique as in Chapter 3 (Luong et al., 2015c; Jean et al.,
2015a).

Character-based NMT — The source and target sequences at the character level are
often about 5 times longer than their counterparts in thedvi@msed models as can be
inferred from the statistics in Takle 5.1. Due to the memanystraint in GPUSs, | limit my
source and target sequences to a maximum length of 150 eachbackpropagate through
at most 300 timesteps from the decoder to the encoder. Witllemb12-dimensional
models, | can afford to have longer sequences with up to &®ksmckpropagation.

Hybrid NMT - Theword-level component uses the same settings as the purely word-
based NMT. For theharacterlevel source and target components, | experiment with both
shallow and deep 1024-dimensional models of 1 and 2 LSTM$ayeset the weight in
Eq. (5.1) for my character-level loss 1.

Training Time — It takes about 3 weeks to train a word-based model Mih= 50K
and about 3 months to train a character-based model. Tgaamd testing for the hybrid
models are about 10-20% slower than those of the word-basel@lswith the same vo-
cabulary size.

5.3.3 Results

| compare my models with several strong systems. Thesedadlue winning entry in
WMT'15, which was trained on a much larger amount of datagbPparallel and 393.0M
monolingual sentences (Bojar and Tamchyna, Zalﬁj.contrast, | merely use the pro-
vided parallel corpus of 15.8M sentences. For NMT, to thé dlesy knowledge [(Jean etlal.,

SObtained from the alignment links produced by the Berkeligar (Liang et al., 2006) over the training
corpus.

5This entry combines two independent systems, a phrasetideses model and a deep-syntactic
transfer-based model. Additionally, there is an automptist-editing system with hand-crafted rules to
correct errors in morphological agreement and semanticings, e.g., loss of negation.
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2015b) has the best published performance on English-Czech

As shown in Tablé 512, for a purelyord-basedapproach, my single NMT model out-
performs the best single model in (Jean et al., 2015b)1b§ points despite using a smaller
vocabulary of only 50K words versus 200K words. My ensempttesn(e) slightly out-
performs the best previous NMT system wit&4 BLEU.

To my surprise, purelgharacter-basednodels, though extremely slow to train and
test, perform quite well. ThBl2dimensional attention-based modg) is best, surpassing
the single word-based model in (Jean etlal., 2015b) despitea¢p much fewer parame-
ters. It even outperforms most NMT systems on ghniith 46.6 points. This indicates
that this model translate words that closely but not exatthtch the reference ones as
evidenced in Section 5.4.3. | notice two interesting obesions. First, attention is crit-
ical for character-based models to work as is obvious froenpior performance of the
non-attentional model; this has also been shown in speedgmnéion (Chan et al., 2016).
Second, long time-step backpropagation is more importarg acted by the fact that the
larger1024dimensional modefh) with shorter backprogration is inferior {g).

My hybrid models achieve the best results. At 10K words, | demonstraemy
separate-patlstrategy for the character-level target generatdn?,3) is effective, yield-
ing an improvement of 5 BLEU points when comparing syster(js vs. (i). A deeper
character-level architecture of 2 LSTM layers providesthaosigni cant boost of 2:1
BLEU. With 17:7 BLEU points, my hybrid systenfk) has surpassed word-level NMT
models.

When extending to 50K words, | further improve the transiatjuality. My best single
model, systenl) with 19:6 BLEU, is already better than all existing systems. My endemb
model (m) further advances the SOTA result 20.7 BLEU, outperforming the winning
entry in the WMT'15 English-Czech translation task by a &argargin of 4.:9 points. My
ensemble model is also best in terms of ghniith 47.5points.

5.4 Analysis

This section rst studies the effects of vocabulary sizesaxls translation quality. | then
analyze more carefully my character-level components byalizing and evaluating rare
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Figure 5.4:Vocabulary size effect— shown are the performances of different systems as
| vary their vocabulary sizes. | highlight the improvemeoitsained by my hybrid models
over word-based systems which already handle unknown words

word embeddings as well as examining sample translations.

5.4.1 Effects of Vocabulary Sizes

As shown in Figuré 5]4, my hybrid models offer large gains 2fl+11.4 BLEU points
over strong word-based systems which already handle unkmawds. With only a small
vocabulary, e.g., 1000 words, my hybrid approach can prdystems that are better than
word-based models that possess much larger vocabulariese Wappears from the plot
that gains diminish as | increase the vocabulary size, latigat my hybrid models are still
preferable since they understand word structures and catidiaew complex words at test
time as illustrated in Sectidn 5.4.3.

5.4.2 Rare Word Embeddings

| evaluate thesourcecharacter-level model by building representations foe raords and
measuring how good these embeddings are.

Quantitatively, | follow Luong et al.[ (2013) in using the vdosimilarity task, specif-
ically on theRare Worddataset, to judge the learned representations for compbestsy
The evaluation metric is the Spearman’s correlatidmetween similarity scores assigned
by a model and by human annotators. From the results in TaB)d Ban see that source
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representations produced by my hyHr'rdodeIs are signi cantly better than those of the
word-based one. It is noteworthy that my deep recurrentachear-level models can outper-
form the model of/ (Luong et al., 2013), which uses recurseeral networks and requires
a complex morphological analyzer, by a large margin. My grenfance is also competi-
tive to the best Glove embeddings (Pennington et al.,|l20ohwwere trained on a much
larger dataset.

System Size | jVj
(Luong et al., 2013) 1B| 138K 34.4

Glove (Pennington et al., 2014

My NMT models
(d) | Word-based 0.3B 50K 204
(k) |Hybrid " [0.3B] 10K | 424
() |Hybrid [ 0.3B| 50K |47.1

Table 5.3:Word similarity task — shown are Spearman'’s correlatiomn theRare Word
dataset of various models (with different vocab sijég.

Qualitatively, | visualize embeddings produced by the iyinodel (I) for selected
words in the Rare Word dataset. Figlrel5.5 shows the two+tiioral representations
of words computed by the Barnes-Hut-SNE algorithm (van deatdn| 201:5. It is ex-
tremely interesting to observe that words are clustereethmy not only by the word struc-
tures but also by the meanings. For example, in the top-teff thecharacterbased rep-
resentations for “loveless”, “spiritless”, “heartlesslgnd “heartlessness” are nearby, but
clearly separated into two groups. Similarly, in the cebiexes,word-based embeddings
of “acceptable”, “satisfactory”, “unacceptable”, and atisfactory”, are close by but sepa-
rated by meanings. Lastly, the remaining boxes demongtrateny character-level models
are able to build representations comparable to the wosdebanes, e.g., “impossibilities”
vs. “impossible” and “antagonize” vs. “antagonist”. All tifis evidence strongly supports

that the source character-level models are useful andtietiec

I look up the encoder embeddings for frequent words and bejidesentations for rare word from char-
acters.
8] run Barnes-Hut-SNE algorithm over a set of 91 words, bugr lbut 27 words for displaying clarity.
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Figure 5.5:Barnes-Hut-SNE visualization of source word representatins— shown are
sample words from th®are Worddataset. | differentiate two types of embeddings-
guentwords in which encoder embeddings are looked up directlyrarelwords where |
build representations from characters. Boxes highliganges that | will discuss in the
text. | use the hybrid modé€l) in this visualization.
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source| The authdstephen Jay Gouldlied 20 years aftediagnosis.
human| AutorStephen Jay Goulgemrel 20 let paliagnbze.
word Autor Stephen Jay unk > zemrel 20 let po<unk > .
1 Autor Stephen Jay Goulgemrel 20 let pgoo .
char | Autor Stepher Stepherzemrel 20 let paliagnbze.
hybrid Autor <unk > < unk > < unk > zemrel 20 let po<unk >.
Autor Stephen Jay Goulgemrel 20 let paliagnbze.
source| As the RevererMartin Luther King Jr. said fty years ago:
human| Jalpred padeati letyrekl reverendVartin Luther King Jr.
word Jak rekl reverend Martig unk > King <unk > pred padesan lety :
2 Jak rekl reverendMartin Luther Kingrekl
char | Jako reverendllartin Lutherkral r'kal
hybrid Jak pred<unk > lety rekl <unk > Martin <unk > < unk >< unk>:
Jakpred padeati letyrekl reverendMartin Luther KingJr.:
source| Hed1l-year-olddaughter Shani Bart, said it felt a ” little bitweird " [..] back to school
human| Jejjederactileta dceraShani Bartoa prozradila , ze ” je to trochaviastn ” [..] znova do

skoly
3 word Jej'<unk > dcera<unk > < unk > rekla , ze je to " trochu divné ", [..] vrac” do skoly
Jej 11-year-olddceraShani, rekla , ze je to " trochudivné”, [..] vrac” do skoly
char | Jej jederactiletadcera Shani Bartoa, r'kala , ze c't” trochulivne, [..] vratila do skoly
hybrid Jej’<unk > dcera <unk>< unk> ,rekla,ze c't " trochu<unk> ", [..] vratila do skoly
Jej jederactileta dcera ,Graham Bart, rekla , ze ¢'t” " trochu ", [..] vratila do skoly

Table 5.4:Sample translations on newstest2015 for each example, | show tledurce
humantranslation, and translations of the following NMT system®rd model(d), char
model(g), andhybrid model(k). | show the translations before replacingink > tokens
(if any) for the word-based and hybrid models. The followiognats are used to highlight
correct wrong, andclosetranslation segments.
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5.4.3 Sample Translations

| show in TableL5.4 sample translations between variousesyst In the rst example,
my hybrid model translates perfectly. The word-based mtadksl to translate “diagnosis”
because the secortunk > was incorrectly aligned to the word “after”. The character-
based model, on the other hand, makes a mistake in trargstaimes.

For the second example, the hybrid model surprises us whemitapture the long-
distance reordering of “ fty years ago” and “pred pade$éty” while the other two models
do not. The word-based model translates “Jr.” inaccuratabyto the incorrect alignment
between the secondunk> and the word “said”. The character-based model literally
translates the name “King” into “kral” which means “king”.

Lastly, both the character-based and hybrid models impresy their ability to trans-
late compound words exactly, e.g., “11-year-old” and “je@ldileta”; whereas the identity
copy strategy of the word-based model fails. Of course, niyridymodel does make mis-
takes, e.g., it fails to translate the name “Shani Bart”. 1@Wethese examples highlight
how challenging translating into Czech is and that being &bltranslate at the character
level helps improve the quality.

5.5 Conclusion

| have proposed a novalybrid architecture that combines the strength of both word- and
character-based models. Word-level models are fast toarad offer high-quality transla-
tion; whereas, character-level models help achieve thieofjogaen vocabulary NMT. | have
demonstrated these two aspects through my experimentdtsrasd translation examples.
My best hybrid model has surpassed the performance of bethett word-based NMT
system and the best non-neural model to establish a newdsttte-art result for English-
Czech translation in WMT'15 witl20.:7 BLEU. Moreover, | have succeeded in replac-
ing the standard unk replacement technique in NMT with myatter-level components,
yielding an improvement of 21 114 BLEU points. My analysis has shown that my
model has the ability to not only generate well-formed wdod<Czech, a highly in ected
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language with an enormous and complex vocabulary, but algd accurate representa-
tions for English source words. Additionally, | have demioaied the potential of purely
character-based models in producing good translatioag;ltave outperformed past word-
level NMT models. | will further discuss the potential of #gemodels in Chaptér 7.



Chapter 6

The Future of NMT

In previous chapters, my efforts at improving neural maehmanslation have centered
around enhancing the model architecture to address diffeeds such as translating long
sentences or coping with complex vocabularies. In this @@rapswitch gears to examine
more “external” aspects of NMT, which is also a way for me tketa quick peek into
the future of NMT. Speci cally, | rst examine in Sectidn §dow NMT can be improved
by utilizing data from not only the translation but also atkesks such as parsing, image
caption generation, and unsupervised learning. This mdrhunder thenulti-tasksetting
which | believe is important for the future of NMT given therhangous amount of data
available in the world growing at an exponentially fast patke second aspect that | ex-
amine is making NMT models smaller, a topic of increasingonignce as mobile devices
become dominant. Speci cally, in Sectign 6.2, | cast suchidkrata as anodel com-
pressionproblem in which | answer how much we can reduce the sizes of MMdels
without sacri ce in performance and reveal interestingiguats in the parameter space of
NMT. Lastly, in Section 6.3, | highlight other future trenaisd potential research directions
for NMT.

6.1 Multi-task Sequence to Sequence Learning

Multi-task learning (MTL) is an important machine learnipgradigm that aims at improv-
ing the generalization performance of a task using othetedltasks. This framework

92
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has been widely studied by Thrun (1996); Caruana (1997)e&em and Pontil (2004);
Ando and Zhang (2005); Argyriou etlal. (2007); Kumar and/2012), among many oth-
ers. In the context of deep neural networks, MTL has beenegpplccessfully to various
problems ranging from language (Liu et al., 2015), to vig([Donahue et al., 2014), and
speechl(Heigold et al., 2013; Huang etlal., 2013).

As we have seen in earlier chapters, sequence to sequemrg@sé) learning
(Kalchbrenner and Blunsom, 2013; Sutskever et al., |2014; eElal., 2014) has emerged
as an effective paradigm for dealing with variable-lengtputs and outputs. While rela-
tively new, theseq2se@pproach has achieved state-of-the-art results in notitsndyiginal
application — machine translation = (Luong et al., 2015enJs al.| 2015a; Luong etlal.,
2015b; Jean et al., 2015b; Luong and Manning, 2015), butialage caption generation
(Vinyals et al.; 2015b), and constituency parsing (Vinlal.,( 2015a).

Despite the popularity of multi-task learning and sequdncgequence learning, there
has been little work in combining MTL witeeg2sedearning. To the best of my knowl-
edge, there is only one recent publication_ by Dong et al. §2®dhich applies seq2seq
models for machine translation, where the goal is to tra@$tam one language to multiple
languages. In this work, | propose three MTL approachestiraplement one another: (a)
theone-to-manyapproach — for tasks that can have an encoder in common, suiEnala-
tion and parsing; this applies to the multi-target trangtasetting inl(Dong et al., 2015) as
well, (b) themany-to-oneapproach — useful for multi-source translation or tasks lmctv
only the decoder can be easily shared, such as translatibimage captioning, and lastly,
(c) the many-to-manyapproach — which share multiple encoders and decodersgirou
which | study the effect of unsupervised learning in tratigia | show that syntactic pars-
ing and image caption generation improves the translatiality between English and
German by up to £5 BLEU points over strong single-task baselines on the WMTchen
marks. Furthermore, | have established a s&ate-of-the-artesult in constituent parsing
with 93.0 R. | also explore two unsupervised learning objectives, sege autoencoders
(Dai and Le| 2015) and skip-thought vectars (Kiros et all20and reveal their interest-
ing properties in the MTL setting: the autoencoder helps iederms of perplexities but
more on BLEU scores compared to skip-thought.
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Je suis étudiant _ i (NP PRP j

am a student _ suis étudiant am a student _

Figure 6.1: Sequence to sequence learning examples (left) machine translation

(Sutskever et al., 2014) andght) constituent parsing (Vinyals etlal., 2015a).

6.1.1 Multi-task Sequence-to-Sequence Learning

| generalize the work Azf_DQng_etJalL_(Zdw) to the multi-tasgeence-to-sequence learning
setting that includes the tasks of machine translation (Madistituency parsing, and image

caption generation. Depending on which tasks are involveaypose to categorize multi-
taskseq2sedearning into three general settings. In addition, | wilcliss the unsupervised
learning tasks considered as well as the learning process.

One-to-Many Setting This scheme involvesne encodeandmultiple decoder$or tasks

in which the encoder can be shared, as illustrated in Figite Bhe input to each task
is a sequence of English words. A separate decoder is useehraje each sequence
of output units which can be either (a) a sequence of tagsdostduency parsing as
used in |(Vinya|s et eLIL_ZQlLSa), (b) a sequence of German sviadmachine translation
Lugng_el_a' Mb), and (c) the same sequence of Englisdsifor autoencoders or a
related sequence of English words for the skip-thoughtaivie JﬁLr_os_el_aJ_ZQJJS)

German (translation)

English Tags (parsing)

English (unsupervised)

Figure 6.2:0ne-to-many Setting— one encoder, multiple decoders. This scheme is useful
for either multi-target translation as in (Dong et al., ZpaBbetween different tasks. Here,
English and German imply sequences of words in the resgelethnguages.
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Many-to-One Setting This scheme is the opposite of thee-to-manysetting. As illus-
trated in Figuré_6]3, it consists afiultiple encoderandone decoder This is useful for
tasks in which only the decoder can be shared, for examplenwty tasks include ma-

chine translation and image caption generati ' éﬁQlil)). In addition, from a

machine translation perspective, this setting can bememfa large amount of monolin-

gual data on the target side, which is a standard practiceohme translation system and
has also been explored for neural MT R015

German (translation)

Image (captioning) English

English (unsupervised)

Figure 6.3:Many-to-one setting— multiple encoders, one decoder. This scheme is handy
for tasks in which only the decoders can be shared.

Many-to-Many Setting Lastly, as the name describes, this category is the mosta@ene
one, consisting of multiple encoders and multiple decadérill explore this scheme
in a translation setting that involves sharing multiple @ters and multiple decoders. In
addition to the machine translation task, | will include twosupervised objectives over
the source and target languages as illustrated in Figure 6.4

German (translation) v English

English (unsupervised) German (unsupervised)

Figure 6.4:Many-to-many setting— multiple encoders, multiple decoders. | consider this
scheme in a limited context of machine translation to witize large monolingual corpora
in both the source and the target languages. Here, | consigi@gle translation task and
two unsupervised autoencoder tasks.

Unsupervised Learning Tasks My very rst unsupervised learning task involves learn-
ing autoencoderérom monolingual corpora, which has recently been applieseguence
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to sequence learning (Dai and L.e, 2015). However, in Dai an@2015)'s work, the au-
thors only experiment with pretraining and then netunifmit not joint training which
can be viewed as a form of multi-task learning (MTL). As suchm very interested in
knowing whether the same trend extends to my MTL settings.

Additionally, | investigate the use of thekip-thoughwectors|(Kiros et all, 2015) in the
context of my MTL framework. Skip-thought vectors are tesdrby training sequence to
sequence models on pairs of consecutive sentences, whiasrttee skip-thought objec-
tive a naturabeq2sedgarning candidate. A minor technical dif culty with theigkthought
objective is that the training data must consist of ordeesdesnces, e.g., paragraphs. Unfor-
tunately, in many applications that include machine trainsh, | only have sentence-level
data where the sentences are unordered. To address thét,dasp sentence into two
halves; | then use one half to predict the other half.

Learning (Dong et al., 2015) adopted afternatingtraining approach, where they opti-
mize each task for a xed number of parameter updates (or-batches) before switching
to the next task (which is a different language pair). In migisg, my tasks are more
diverse and contain different amounts of training data. Aesalt, | allocate different num-
bers of parameter updates for each task, which are expresethe mixingratio values

i (for each task). Each parameter update consists of training data from astednly.
When switching between tasks, | select randomly a newitasth probabilitij—ij.

My convention is that the rst task is threeferencetask with ; = 1:0 and the number
of training parameter updates for that task is prespecietdeN. A typical taski will
then be trained fOILil N parameter updates. Such convention makes it easier for us to
fairly compare the same reference task in a single-tasingettich has also been trained
for exactlyN parameter updates. When sharing an encoder or a decodargllsbth the
recurrent connections and the corresponding embeddings.
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6.1.2 Experiments

| evaluate the multi-task learning setup on a wide varietgexjuence-to-sequence tasks:
constituency parsing, image caption generation, machamslkation, and a number of un-
supervised learning as summarized in Tablé 6.1.

Data My experiments are centered around thenslationtask, where | aim to deter-
mine whether other tasks can improve translation and vicgavd use the WMT'15 data
(Boiar et al., 2015) for the EnglishGerman translation problem. Following Chagtér 4
(Luong et al., 2015b), | use the 50K most frequent words fchéanguage from the train-
ing corpusi These vocabularies are then shared with other tasks, efaeparsing in
which the target “language” has a vocabulary of 104 tags.elnewstest2013 (3000 sen-
tences) as a validation set to select my hyperparameteys,neixing coef cients. For
testing, to be comparable with the existing results in Cédgt(Luong et al., 2015b), |
use the ltered newstest2014 (2737 sentencés)the English German translation task
and newstest2015 (2169 senter%éeb the Germah English task. See the summary in
Tablel6.1.

For theunsupervisedasks, | use the English and German monolingual corpora from
WMT'15.H Since in my experiments, unsupervised tasks are alwaydembupth transla-
tion tasks, | use the same validation and test sets as thenpeted translation tasks.

For constituency parsing experiment with two types of corpora:

1. asmall corpus —the widely used Penn Tree Bank (PTB) d4tdsgcus et all, 1993)
and,

2. a large corpus — the high-con dence (HC) parse trees geaviby! Vinyals et &l.
(2015a).

1The corpus has already been tokenized using the defaulhieefrom Moses. Words not in these
vocabularies are represented by the tokank> .

Zhttp://statmt.org/iwmt14/test-filtered.tgz

Shttp://statmt.org/wmt15/test.tgz

4The training sizes reported for the unsupervised tasksrdyel0% of the original WMT'15 monolingual
corporawhich I randomly sample from. Such reduced sizefafaster training time and already about three
times larger than that of the parallel data. | consider uaihthe monolingual data in future work.
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Task Trgin Val_id Tes_t Vocab Size Train Finetune
Size Size| Size| Source| Target Epoch | Start| Cycle
EnglisH German Translation 4.5M 3000 3003  S5S0K 50K 12 3 1
Germat English Translation 45M] 3000 216P 50K 50K 12 8 1
English unsupervised 12.1M I 50K 50K 6 4 0.5
German unsupervised 13.gMPCtlls In texXt——o5——F5; 6 4 05
Penn Tree Bank Parsing 40 1700 2416 50K 104 40 20 4
High-Con dence Corpus Parsing 11.0M 1700 2416 50K 104 6 4 0.5
Image Captioning 596K| 4115 - - 50K 10 5 1

Table 6.1:Data & Training Details — Information about the different datasets used in this
work. For each task, | display the following statistics: tf& number of training examples,
(b) the sizes of the vocabulary, (c) the number of trainingokys, and (d) details on when
and how frequent | halve the learning ratege(uning).

The two parsing tasks, however, are evaluated on the sandatwaih (section 22) and test
(section 23) sets from the PTB data. Note also that the pegss have been linearized
following lVinyals et al. [(2015a). Lastly, famage caption generatign use a dataset of
image and caption pairs provided by Vinyals €tlal. (2015b).

Training Details In all experiments, following Sutskever et al. (2014) andater[3
(Luong et al.) 2015c), | train deep LSTM models as follows) I(@ase 4 LSTM layers
each of which has 1000-dimensional cells and embed@i(ig)sparameters are uniformly
initialized in [-0.06, 0.06], (c) | use a mini-batch size d18|, (d) dropout is applied with
probability of 0.2 over vertical connections (Pham et &@14), (e) | use SGD with a xed
learning rate of 0.7, (f) input sequences are reversed,astly,| (g) | use a simple netun-
ing schedule — aftex epochs, | halve the learning rate evgrgpochs. The values and

y are referred asetune startand netune cyclein Table[6.1 together with the number of
training epochs per task.

As described in Sectidn 6.1.1, for each multi-task expemitirieneed to choose one task
to be thereference taskwhich corresponds to; = 1). The choice of the reference task
helps specify the number of training epochs and the netuart/sycle values which | also
when training that reference task alone for fair compariSanmake sure my ndings are
reliable, | run each experimental con guration twice angda# the average performance in
the formatmean (stddev)

SFor image caption generation, | use 1024 dimensions, whialsb the size of the image embeddings.
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Results

| explore several multi-task learning scenarios by conmgralarge task (machine trans-
lation) with: (a) asmalltask — Penn Tree Bank (PTB) parsing, (bjnadium-sizedask

— image caption generation, (c) anotlenge task — parsing on the high-con dence (HC)
corpus, and (d) lastlynsupervised tasksuch as autoencoders and skip-thought vectors.
In terms of evaluation metrics, | report both validation dast perplexities for all tasks.
Additionally, | also compute test BLEU scores (Papinenil£i2802) for translation.

Large Tasks with Small Tasks In this setting, | want to understand if a small task such
asPTB parsingcan help improve the performance of a large task such adatems Since
the parsing task maps from a sequence of English words to wesegq of parsing tags
(Vinyals et al.| 2015a), only the encoder can be shared witBraglisH German transla-
tion task. As a result, this is@ne-to-manyMTL scenario §6.1.1).

Task _ Translation Parsing
Valid ppl | Testppl| TestBLEU  TestF
Chapter 4 system (Luong et al., 2015b) - 8.1 14.0 -
My single-task systems
Translation 8.8(0.3) 8.3(0.2) 14.3(0.3) -
PTB Parsing - - - 43.3 (1.7)
My multi-task systems
Translation+ PTB Parsing (1x) 85(0.00) 8.2(0.0) 14.7(0.1) 54.5(0.4)
Translation+ PTB Parsing (0.1x) 8.3(0.1) 7.9(0.0) 15.1(0.0p5.2(0.0)
Translation+ PTB Parsing (0.01x) 8.2(0.2) | 7.7(0.2) | 15.8(0.4) | 39.8 (2.7)

Table 6.2:Large tasks with small tasks EnglishH German WMT'14 translation & Penn
Tree Bank parsing results shown are perplexities (ppl), BLEU scores, and parsinfpF
various systems. For muli-task modeisferencetasks are in italic with the mixing ratio
in parentheses. My results are averaged over two runs irotheat mean (stddev)Best
results are highlighted in boldface.

To my surprise, the results in Talile 6.2 suggest that by gdalivery small number of
parsing mini-batches (with mixing rati@01, i.e., one parsing mini-batch per 100 transla-
tion mini-batches), | can improve the translation qualithstantially. More concretely, my
best multi-task model yields a gain o156 BLEU points over the single-task baseline. Itis
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worth pointing out that as shown in Taljle 6.2, my single-taageline is very strong, even
better than the equivalent non-attention model reporté&@hiaptef 4/(Luong et al., 2015b).
Larger mixing coef cients, however, over t the small PTB mpus; hence, achieve smaller
gains in translation quality.

For parsing, as Vinyals et al. (2015a) have shown that adtems crucial to achieve
good parsing performance when training on the small PTBurp do not set a high
bar for my attention-free systems in this setup (bettergserdnces are reported in Sec-
tion[6.1.2). Nevertheless, the parsing results in Tablar@lzate that MTL is also bene-
cial for parsing, yielding an improvement of up to3#9 F, points over the baseliljtaa.lt
would be interesting to study how MTL can be useful with thesence of thattention
mechanism, which I leave for future work.

Large Tasks With Medium Tasks | investigate whether the same pattern carries over to
a medium task such asage caption generatiorSince the image caption generation task
maps images to a sequence of English wards (Vinyals et dl5t20Xu et al.| 2015), only
the decoder can be shared with a Germa&mnglish translation task. Hence, this setting
falls under themany-to-oneMTL setting §6.1.1).

The results in Table 6.3 show the same trend | observed hdfakis, by training on
another task for a very small fraction of time, the model ioy&s its performance on its
main task. Speci cally, with 5 parameter updates for imagptmn generation per 100
updates for translation (so the mixing ratio®®5), | obtain a gain of 8:7 BLEU scores
over a strong single-task baseline. My baseline is almostBWBpoint better than the
equivalent non-attention model reported in Chajpter 4 (lguetral.| 2015b).

Large Tasks with Large Tasks My rst set of experiments is almost the same as the
one-to-many big-vs-small-task setting which combitresslation as the reference task,
with parsing. The only difference is in terms of parsing ddtestead of using the small
Penn Tree Bank corpus, | consider a large parsing resoureehigh-con dence (HC)

SWhile perplexities correlate well with BLEU scores as shawiChaptefBl(Luong et al., 2015c), | ob-
serve empirically in Sectidn 6.1.2 that parsing perplezitire only reliable if it is less thdn3. Hence, | omit
parsing perplexities in Table ®.2 for clarity. The parsiestiperplexities (averaged over two runs) for the last
four rows in Tablé 6J2 are 1.95, 3.05, 2.14, and 1.66. Valiglegities are similar.
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Task Translation Captioning
Valid ppl | Testppl | TestBLEU  Valid ppl

Chapter 4 system (Luong et al., 2015b) - 14.3 16.9 -
My single-task systems

Translation 11.0(0.0) 12.5(0.2) 17.8(0.1) -

Captioning - - - 30.8 (1.3)
My multi-task systems

Translation+ Captioning (1x) 11.9 14.0 16.7 43.3

Translation+ Captioning (0.1x) 10.5(0.4) 12.1(0.4) 18.0(0.6)28.4(0.3)

Translation+ Captioning (0.05x) 10.3(0.1) | 11.8(0.0) | 18.5(0.0) | 30.1(0.3)

Translation+ Captioning (0.01x) 10.6 (0.0) 12.3(0.1) 18.1(0.4) 35211

Table 6.3: Large tasks with medium tasks German English WMT'15 translation &
captioning results- shown are perplexities (ppl) and BLEU scores for variogggawith
similar format as in Table 6. Referencéasks are in italic with mixing ratios in parenthe-
ses. The average results of 2 runs armegan (stddeviprmat.

corpus, which is provided hy Vinyals etl/al. (2015a). As highted in Tablé 6.4, the trend
is consistent; MTL helps boost translation quality by up @BLEU points.

Task _ Translation

Valid ppl | Test ppl| Test BLEU
Chapter 4 system (Luong et al., 2015b) - 8.1 14.0

My systems

Translation 8.8(0.3) 8.3(0.2) 14.3(0.3)
Translation+ HC Parsing (1x) 8.5(0.0) 8.1(0.1) 15.0(0.6)
Translation+ HC Parsing (0.1x) 8.2(0.3) | 7.7(0.2) | 15.2(0.6)
Translation+ HC Parsing (0.05x) 8.4(0.0) 8.0(0.1) 14.8(0.2)

Table 6.4: English! German WMT'14 translation — shown are perplexities (ppl) and
BLEU scores of various translation models. My multi-taskteyns combine translation
and parsing on the high-con dence corpus together. Mixaeigps are in parentheses and
the average results over 2 runs arenean (stddeviprmat. Best results are bolded.

The second set of experiments shifts the attentiopasingby having it as the ref-
erence task. | show in Table 6.5 results that combine passitigeither (a) the English
autoencoder task or (b) the EnglisiiGerman translation task. My models are compared
against the best attention-based systems in (Vinyals,&@l5a), including the state-of-
the-art result of 92.8 &

Before discussing the multi-task results, | note a few ggéng observations. First,
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Parsing

Task Valid ppl | Testh
LSTM+A (Vinyals et al., 2015a) - 92.5
LSTM+A+E (Vinyals et al., 2015a - 92.8

My systems
HC Parsing 1.12/1.12 92.2(0.1)
HC Parsing+ Autoencoder (1x) 1.12/1.1p 92.1(0.1)
HC Parsing+ Autoencoder (0.1x) | 1.12/1.12 92.1(0.1)
HC Parsing+ Autoencoder (0.01x} 1.12/1.13 92.0 (0.1)
HC Parsing+ Translation (1x) 1.12/1.13 91.5(0.2)
HC Parsing+ Translation (0.1x) 1.13/2.18 92.0(0.2)
HC Parsing+ Translation (0.05x) | 1.11/1.12| 92.4 (0.1)
HC Parsing+ Translation (0.01x) 1.12/1.12 92.2(0.0)
Ensemble of 6 multi-task systems - 93.0

Table 6.5: Large-Corpus parsing results— shown are perplexities (ppl) and Bcores
for various parsing models. Mixing ratios are in parentses®l the average results over 2
runs are irmean (stddevfprmat. | show the individual perplexities for all runs daesmall
differences among them. For Vinyals et al. (2015a)'s parsasults, LSTM+A represents
a single LSTM with attention, whereas LSTM+A+E indicatesesrsemble of 5 systems.
Important results are bolded.

very small parsing perplexities, close to 1.1, can be aeievith large training da@.
Second, our baseline system can obtain a very competitivecére of 92.2, rivaling
Vinyals et al. (2015a)'s systems. This is rather surprisimgce our models do not use
any attention mechanism. A closer look into these modelsalethat there seems to be
an architectural difference: Vinyals et al. (2015a) usey&t LSTM with 256 cells and
512-dimensional embeddings; whereas our models use 4418/&M with 1000 cells and
1000-dimensional embeddings. This further supports gdim (Jozefowicz et al., 2016)
that larger networks matter for sequence models.

For the multi-task results, while autoencoder does not dedmlp parsing, translation
does. At the mixing ratio of 0.05, | obtain a non-negligibt®ist of 0.2 k over the baseline
and with 92.4 k, our multi-task system is on par with the best single systepanted in

"Training solely on the small Penn Tree Bank corpus can ordyge the perplexity to at mo4t6, as
evidenced by poor parsing results in Tdbld 6.2. At the same, tihese parsing perplexities are much smaller
than what can be achieved by a translation task. This is lsecparsing only hat04 tags in the target
vocabulary compared 0K words in the translation case. Note tlial is the theoretical lower bound.
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(Vinyals et al.; 2015a). Furthermore, by ensembling 6 diifié multi-task models (trained
with the translation task at mixing ratios of 0.1, 0.05, an@l}, | am able to establish a
newstate-of-the-artesult in English constituent parsing wié3.0F, score.

Multi-tasks and Unsupervised Learning My main focus in this section is to determine
whether unsupervised learning can help improve transiatiSpeci cally, | follow the
many-to-mangpproach described in Section 611.1 to couple the Gerntamglish transla-
tion task with two unsupervised learning tasks on monolaigorpora, one per language.
The results in Tabl€s 8.6 show a similar trend as before, d amaunt of other tasks, in
this case thautoencodebbjective with mixing coef cient 0.05, improves the traagbn
quality by +0:5 BLEU scores. However, as | train more on the autoencoder taskwith
larger mixing ratios, the translation performance getsseor

Task Translation German English
Valid ppl | Testppl | TestBLEU  Test ppl Test ppl

Chapter 4 system (Luong et al., 2015b) - 14.3 16.9 - -
My single-task systems

Translation | 11.0(0.0) 125(0.2) 17.8(0.1) -] -

My multi-task systems with Autoencoders

Translation+ autoencoders (1.0x) 12.3 13.9 16.0 1.01 2.10

Translation+ autoencoders (0.1x) 11.4 12.7 17.7 1.13 1.44

Translation+ autoencoders (0.05x) | 10.9(0.1) | 12.0(0.0) | 18.3(0.4) | 1.40(0.01) 2.38(0.39)

My multi-task systems with Skip-thought Vectors

Translation+ skip-thought (1x) 10.4(0.1) | 10.8(0.1) | 17.3(0.2)| 36.9(0.1) | 31.5(0.4)
Translation+ skip-thought (0.1x) 10.7(0.0) 11.4(0.2) 17.8(0.4) 5D3B] | 53.7(0.4)
Translation+ skip-thought (0.01x) 11.0(0.1) 12.2(0.0)17.8(0.3) | 76.3(0.8)| 142.4(2.7)

Table 6.6:German! English WMT'15 translation & unsupervised learning results —
shown are perplexities for translation and unsupervisaahlag tasks. | experiment with
both autoencoderaind skip-thought vectorfor the unsupervised objectives. Numbers in
mean (stddeviprmat are the average results of 2 runs; others are for 1mlyn o

Skip-thoughbbjectives, on the other hand, behave differently. If | meleok at the
perplexity metric, the results are very encouraging: withrerskip-thought data, | perform
better consistently across both the translation and thepamrsised tasks. However, when
computing the BLEU scores, the translation quality degsaael increase the mixing co-
ef cients. | anticipate that this is due to the fact that th&psthought objective changes
the nature of the translation task when using one half of segsep to predict the other
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half. It is not a problem for the autoencoder objectives, &y, since one can think of
autoencoding a sentence as translating into the same lgagua

| believe these ndings pose interesting challenges in thest towards better unsu-
pervised objectives, which should satisfy the followingesta: (a) a desirable objective
should be compatible with the supervised task in focus, algoencoders can be viewed
as a special case of translation, and (b) with more unsugeivilata, both intrinsic and
extrinsic metrics should be improved; skip-thought obyed satisfy this criterion in terms
of the intrinsic metric but not the extrinsic one.

6.1.3 Conclusion

In this section, | showed that multi-task learning (MTL) damprove the performance of
the attention-free sequence to sequence model of (Sutséeak | 2014). | found it sur-
prising that training on syntactic parsing and image captiata improved our translation
performance, given that these datasets are orders of radgrsmaller than typical trans-
lation datasets. Furthermore, | have established astaig-of-the-artesult in constituent
parsing with an ensemble of multi-task models. | also shothatthe two unsupervised
learning objectives, autoencoder and skip-thought, keeld#erently in the MTL context
involving translation. | hope that these interesting ngsnwill motivate future work in uti-
lizing unsupervised data for sequence to sequence learAiagticism of this work is that
the sequence to sequence models do not employ the attergidramsm (Bahdanau et al.,
2015). | leave the exploration of MTL with attention for fuéuwork.

6.2 Compression of NMT Models via Pruning

While NMT has a signi cantly smaller memory footprint tharadlitional phrase-based
approaches (which need to store gigantic phrase-tabletaagdage models), the model
size of NMT is still prohibitively large for mobile deviceBor example, the NMT systemin
Chapter 4/(Luong et al., 2015b)requires over 200 milliorapaeters, resulting in a storage
size of hundreds of megabytes. Though the trend for biggeérdaeper neural networks
has brought great progress, it has also introduced ovempeerization, resulting in long
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running times, over tting, and the storage size issue dised above. A solution to the
over-parameterization problem could potentially aid latee issues, though the rst (long
running times) is outside the scope of this work.

| investigate the ef cacy of weight pruning for NMT as a measfscompression. |
show that despite its simplicity, magnitude-based prumity retraining is highly effec-
tive, and | compare three magnitude-based pruning schemelgass-blind class-uniform
andclass-distribution Though recent work has chosen to use the latter two, | ndrte
and simplest scheme -elass-blind— the most successful. | am able to prune 40% of the
weights of a state-of-the-art NMT system with negligiblefpemance loss, and by adding
a retraining phase after pruning, | can prune 80% with nogoerance loss. My pruning
experiments also reveal some patterns in the distribufioedundancy in NMT. In partic-
ular, I nd that higher layers, attention and softmax weghte the most important, while
lower layers and the embedding weights hold a lot of reducgldfor the Long Short-Term
Memory (LSTM) architecture, | nd that at lower layers therpmeters for the input are
most crucial, but at higher layers the parameters for thesgalso become important.

6.2.1 Related Work

Pruning the parameters from a neural network, referred wweaght pruningor network
pruning is a well-established idea though it can be implementedanytways. Among
the most popular are the Optimal Brain Damage (OED) (Le Cual gf1989) and Opti-
mal Brain Surgeon (OBS) (Hassibi and Stark, 1993) techriguénich involve comput-
ing the Hessian matrix of the loss function with respect te plarameters, in order to
assess thealiencyof each parameter. Parameters with low saliency are themegru
from the network and the remaining sparse network is regthinBoth OBD and OBS
were shown to perform better than the so-called "naive ntaggibased approach’, which
prunes parameters according to their magnitude (deleangnpeters close to zero). How-
ever, the high computational complexity of OBD and OBS corepanfavorably to the
computational simplicity of the magnitude-based approasipecially for large networks
(Augasta and Kathirvalavakumar, 2013).
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In recent years, the deep learning renaissance has prompethvestigation of net-
work pruning for modern models and tasks. Magnitude-basedipg with iterative re-
training has yielded strong results for Convolutional NéWetworks (CNN) performing
visual tasks./(Collins and Kohli, 2014) prune 75% of Alexldatameters with small accu-
racy loss on the ImageNet task, while (Han et al., 2015b)g@88% of AlexNet parameters
with no accuracy loss on the ImageNet task.

Other approaches focus on pruning neurons rather than pegesyvia sparsity-inducing
regularizers|(Murray and Chiang, 2015) or "wiring togetpeirs of neurons with similar
input weights [(Srinivas and Babu, 2015). These approacteesnach more constrained
than weight-pruning schemes; they necessitate ndingengro rows of weight matrices,
or near-identical pairs of rows, in order to prune a singlarae. By contrast weight-
pruning approaches allow weights to be pruned freely andpaddently of each other.
The neuron-pruning approach of (Srinivas and Babu, 2015)skawn to perform poorly
(it suffered performance loss after removing only 35% ofx¥ANet parameters) compared
to the weight-pruning approach of (Han et al., 2015b). Tho@durray and Chiang, 2015)
demonstrates neuron-pruning for language modeling asgbat(non-neural) Machine
Translation pipeline, their approach is more geared tosvarghitecture selection than
compression.

There are many other compression techniques for neuralonetywincluding ap-
proaches based on on low-rank approximations for weighticest(Jaderberg et al., 2014,
Denton et al.| 2014), or weight sharing via hash functionsefCet al.| 2015). Several
methods involve reducing the precision of the weights oivatibns (Courbariaux et al.,
2015), sometimes in conjunction with specialized hardw{@epta et al.| 2015a), or
even using binary weights (Lin etial., 2016). The "knowledggillation' technique of
(Hinton et al., 2015) involves training a small “studenttwerk on the soft outputs of a
large ‘teacher' network. Some approaches use a sophetigapeline of several tech-
niques to achieve impressive feats of compression (Han,&l5a; landola et al., 2016).

Most of the above work has focused on compressing CNNs farrvissks. | extend
the magnitude-based pruning approach of (Hanlet al., 2abSiecurrent neural networks
(RNN), in particular LSTM architectures for NMT, and to mydwledge | am the rst
to do so. There has been some recent work on compression fs RN et al., 2016;
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Figure 6.5: NMT architecture. This example has two layerg, oy system has four.
The different weight classes are indicated by arrows otdiifit color (the black arrows
in the top right represent simply choosing the highestiagoword, and thus require no
parameters). Best viewed in color.

Prabhavalkar et al., 2016), but it focuses on other, nomipgicompression techniques.
Nonetheless, my general observations on the distributiordundancy in a LSTM, de-
tailed in Sectio 6.2]3, are corroborated by (Lu et al., 3016

6.2.2 My Approach
Understanding NMT Weights

In this work, | am focusing on théeep multi-layer recurrerdrchitecture with.STMas the

hidden unit type. Figure 6.5 shows the system in detail, Iiggting the different types of
parameters, or weights, in the model. | will go through trehdecture from bottom to top.
First, a vocabulary is chosen for each language, assumanghih topV frequent words are
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selected. Thus, every word in the source or target vocapu&ar be represented by a one-
hot vector of length/. The source input sentence and target input sentence sesyeel
as a sequence of one-hot vectors, are transformed into arsegjof word embeddings by
theembeddingveights. These embedding weights, which are learned dtrangng, are
different for the source words and the target words. The veonteddings and all hidden
layers are vectors of length(a chosen hyperparameter).

The word embeddings are then fed as input into the main nkfwdrich consists of
two multi-layer RNNs “stuck together'— an encoder for tharee language and a decoder
for the target language, each with their own weights. fdeal-forward(vertical) weights
connect the hidden unit from the layer below to the upper RNd¢Ky and therecurrent
(horizontal) weights connect the hidden unit from the poagitime-step RNN block to the
current time-step RNN block. The hidden state at the toprlal/the decoder is fed through
anattentionlayer, which guides the translation by “paying attentiorrdlevant parts of the
source sentence. Finally, for each target word, the topr lagielen unit is transformed by
thesoftmaxweights into a score vector of length The target word with the highest score
is selected as the output translation.

Weight Subgroups in LSTM For the aforementioned RNN block, | choose to use
LSTM as the hidden unit type. To facilitate my later discosson the different subgroups
of weights within LSTM, recall the details of the LSTM preseain Chapter 2 (2.35-2.37):

sig h'1
Tan:2n (6.1)
%E %Jg h

tanh
c{=f ¢ ,+i A (6.2)
hi = o tanhq) (6.3)

Each LSTM block at time and layed computes as output a pair of hidden and memory
vectors i, d) given the previous paih{ ,,d ;) and an input vectdn, * (either from the
LSTM block below or the embedding weightd i 1). All of these vectors have length

The core of a LSTM block is the weight matfg,.,, of sizedn  2n. This matrix can be
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decomposed into 8 subgroups that are responsible for thactions betweehinput gate
i, forget gatd , output gate, input signalﬁg f feed-forward inpuh} !, recurrent input

hlt 19

Pruning Schemes

| follow the general magnitude-based approach of (Han!gP@ll5b), which consists of
pruning weights with smallest absolute value. However, égjion the authors' pruning
scheme with respect to the different weight classes, andrarpnt with three pruning
schemes. Suppose | wish to pruxi# of the total parameters in the model. How do |
distribute the pruning over the different weight classdlsdirated in Figuré 6]5) of my
model? | propose to examine three different pruning schemes

1. Class-blind Take all parameters, sort them by magnitude and prune%hevith
smallest magnitude, regardless of weight class. (So saasseas are pruned propor-
tionally more than others).

2. Class-uniform Within each class, sort the weights by magnitude and proeg%
with smallest magnitude. (So all classes have exaéyof their parameters pruned).

3. Class-distribution For each class weights with magnitude less than. are pruned.
Here, . is the standard deviation of that class an a universal parameter cho-
sen such that in totak% of all parameters are pruned. This is used|by (Hanlet al.,
2015b).

All these schemes have their seeming advantages. Clagbgslining is the simplest and
adheres to the principle that pruning weights (or equivijesetting them to zero) is least
damaging when those weights are small, regardless of theatibns in the architecture.
Class-uniform pruning and class-distribution pruninghbséek to prune proportionally
within each weight class, either absolutely, or relativehte standard deviation of that
class. | nd that class-blind pruning outperforms both athehemes (see Section 6]2.3).
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Figure 6.6: Effects of different pruning schemes.
Retraining

In order to prune NMT models aggressively without perforgeloss, | retrain my pruned
networks. That is, | continue to train the remaining weightg maintain the sparse struc-
ture introduced by pruning. In my implementation, prunedghts are represented by
zeros in the weight matrices, and | use binary ‘'mask’ matriadich represent the sparse
structure of a network, to ignore updates to weights at pfdoeations. This implemen-
tation has the advantage of simplicity as it requires mihioha@anges to the training and
deployment code, but | note that a more complex implementaiiilizing sparse matrices
and sparse matrix multiplication could potentially yielgeed improvements. However,
such an implementation is beyond the scope of this work.

6.2.3 Experiments

| evaluate the effectiveness of my pruning approaches omattemtion-based English-
German NMT system from Chapter 4 (Luong et al., 2015b). Tngimata was obtained
from WMT'14 consisting of 4.5M sentence pairs (116M Englisbrds, 110M German

words). For more details on training hyperparameters drnefaders to Section 4.1 of the
thesis. All models are tested on newstest2014 (2737 sexgendhe model achieves a
perplexity of 6.1 and a BLEU score of 20.5 (after unknown vvmﬂlacemeng.

8The performance of this model is reported under ghabal (dot)in Table 4.1 of the thesis.
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Figure 6.7: "Breakdown' of performance loss (i.e., perfileincrease) by weight class,
when pruning 90% of weights using each of the three prunihgm®es. Each of the rst

eight classes have 8 million weights, attention has 2 mmjliand the last three have 50
million weights each.

Whenretraining pruned NMT systems, | use the following settings: (a) | stath
a smaller learning rate of 0.5 (the original model uses anlegrrate of 1.0), (b) I train
for fewer epochs, 4 instead of 12, using plain SGD, (c) a sengrrning rate schedule is
employed; after 2 epochs, | begin to halve the learning naeyehalf an epoch, and (d) all
other hyperparameters are the same, such as mini-batchZ8zenaximum gradient norm
5, and dropout with probability 0.2.

Comparing pruning schemes

Despite its simplicity, | observe in Figute 6.6 thaass-blindpruning outperforms both
other schemes in terms of translation quality at all prumagcentages. In order to under-
stand this result, for each of the three pruning schemesingat each class separately and
recorded the effect on performance (as measured by pespleigurd 6.7 shows that with
class-uniform pruning, the overall performance loss issedulisproportionately by a few
classes: target layer 4, attention and softmax weightskibgaat Figuré 6.8, | see that the
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Figure 6.8: Magnitude of largest deleted weight vs. peilipfeohange, for the 12 different
weight classes when pruning 90% of parameters by classtamipruning.

most damaging classes to prune also tend to be those witthtseaf) greater magnitude
— these classes have much larger weights than others atrtiee grcentile, so pruning
them under the class-uniform pruning scheme is more damagihe situation is similar
for class-distribution pruning.

By contrast, Figur€ 617 shows that under class-blind pginiine damage caused by
pruning softmax, attention and target layer 4 weights istlyalecreased, and the contri-
bution of each class towards the performance loss is ove@k uniform. In fact, the dis-
tribution begins to re ect the number of parameters in edab— for example, the source
and target embedding classes have larger contributiormibedhey have more weights. |
use only class-blind pruning for the rest of the experiments

Figure[6.T also reveals some interesting information akbiweitdistribution of redun-
dancy in NMT architectures — namely it seems that higherrkagee more important than
lower layers, and that attention and softmax weights areiaku will explore the distribu-
tion of redundancy further in Section 6.2.3.

Pruning and retraining

Pruning has an immediate negative impact on performanceéasured by BLEU) that
is exponential in pruning percentage; this is demonstrhtethe blue line in Figuré 619.
However | nd that up to about 40% pruning, performance is ttyasnaffected, indicating
a large amount of redundancy and over-parameterizatiommm.N
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Figure 6.9: Performance of pruned models (a) after prur{imgafter pruning and retrain-
ing, and (c) when trained with sparsity structure from theseti(see Sectidn 6.2.3).

| now consider the effect of retraining pruned models. Thange line in Figuré_6]9
shows that after retraining the pruned models, baselinfemmeance (20.48 BLEU) is both
recovered and improved upon, up to 80% pruning (20.91 BLElith only a small perfor-
mance loss at 90% pruning (20.13 BLEU). This may seem sumggias | might not expect
a sparse model to signi cantly out-perform a model with venes as many parameters.
There are several possible explanations, two of which asengbelow.

Firstly, | found that the less-pruned models perform bettethe training set than the
validation set, whereas the more-pruned models have ghesarmance on the two sets.
This indicates that pruning has a regularizing effect orréiining phase, though clearly
more is not always better, as the 50% pruned and retraine@lrhad better validation set
performance than the 90% pruned and retrained model. Nelest this regularization
effect may explain why the pruned and retrained models oidpe the baseline.

Alternatively, pruning may serve as a means to escape a ¢ptahum. Figuré 6.10
shows the loss function over time during the training, pngrand retraining process. Dur-
ing the original training process, the loss curve atten$ aod seems to converge (note
that | use early stopping to obtain my baseline model, so tigénal model was trained for
longer than shown in Figute 6]10). Pruning causes an imreethierease in the loss func-
tion, but enables further gradient descent, allowing tleam@ng process to nd a new,
better local optimum. It seems that the disruption causegrbying is bene cial in the
long-run.
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Figure 6.10: The validation set loss during training, pngnand retraining. The vertical
dotted line marks the point when 80% of the parameters amgeptul he horizontal dotted
line marks the best performance of the unpruned baseline.

Starting with sparse models

The favorable performance of the pruned and retrained madédes the question: can
| get a shortcut to this performance btartingwith sparse models? That is, rather than
train, prune, and retrain, what if I simply prune then tralfé’test this, | took the sparsity
structure of my 50%—-90% pruned models, and trained comniplagv models with the
same sparsity structure. The purple line in Figuré 6.9 shinasthe “sparse from the
beginning’ models do not perform as well as the pruned andiretd models, but they do
come close to the baseline performance. This shows thagwiel sparsity structure alone
contains useful information about redundancy and can finergoroduce a competitive
compressed model, it is important to interleave prunindp\iining.

Though my method involves just one pruning stage, otheripgumethods interleave
pruning with training more closely by including severat#gons (Collins and Kohli, 2014;
Han et al., 2015b). | expect that implementing this for NMTuleblikely result in further
compression and performance improvements.

Storage size

The original unpruned model (a MATLAB le) has size 782MB. @180% pruned and
retrained model is 272MB, which is a 65.2% reduction. In sk | focus on compression



CHAPTER 6. THE FUTURE OF NMT 115

most common word least common word
target embedding weights
source embedding weights
source layer 1 weights source layer 2 weights source layer 3 weights source layer 4 weights

input gate

forget gate

output gate

input

—

feed-forward  recurrent

target layer 2 weights target layer 3 weights target layer 4 weights

target layer 1 weights

Figure 6.11: Graphical representation of the location adlémeights in various parts of the
model. Black pixels represent weights with absolute siztdénbottom 80%; white pixels
represent those with absolute size in the top 20%. Equitlgleéhese pictures illustrate
which parameters remain after pruning 80% using my classtpiruning scheme.
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in terms of number of parameters rather than storage sizaube it is invariant across
implementations.

Distribution of redundancy in NMT

| visualize in Figure 6.11 the redundancy structure of my NbiBeline modeBlackpix-
els represent weights near to zero (those that can be prumbitg pixels represent larger
ones. First | consider the embedding weight matrices, whokenns correspond to words
in the vocabulary. Unsurprisingly, in Figure 6.11, | see tha& parameters corresponding
to the less common words are more dispensable. In fact, &0epruning rate, for 100
uncommon source words and 1194 uncommon target words, teddlgparameters corre-
sponding to that word. This is not quite the same as removiagvord from the vocabu-
lary — true out-of-vocabulary words are mapped to the emimgddr the "unknown word'
symbol, whereas these "pruned-out' words are mapped tooserebedding. However in
the original unpruned model these uncommon words alreadynkar-zero embeddings,
indicating that the model was unable to learn suf cientlgtdictive representations.
Returning to Figure 6.11, now look at the eight weight masifor the source and target
connections at each of the four layers. Each matrix corredoto thedn  2n matrix Ty 2n
in Equation (6.1). In all eight matrices, | observe — as daesed al., 2016) — that the
weights connecting to the inpﬁtare most crucial, followed by the input gatethen the
output gateo, then the forget gaté. This is particularly true of the lower layers, which
focus primarily on the inpuﬁ. However for higher layers, especially on the target side,
weights connecting to the gates are as important as thosecting to the inpufi. The
gates represent the LSTM's ability to add to, delete fromedrie@ve information from the
memory cell. Figure 6.11 therefore shows that these saphiest memory cell abilities
are most important at thend of the NMT pipeline (the top layer of the decoder). This is
reasonable, as | expect higher-level features to be ledatedn a deep learning pipeline.
| also observe that for lower layers, the feed-forward inpatuch more important than
the recurrent input, whereas for higher layers the rectirgrut becomes more important.
This makes sense: lower layers concentrate on the low-llefi@mation from the current
word embedding (the feed-forward input), whereas highgeramake use of the higher-
level representation of the sentence so far (the recument).
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Lastly, on close inspection, | notice several white diageeanerging within some sub-
squares of the matrices in Figure 6.11, indicating that ewiémout initializing the weights
to identity matrices (as is sometimes done (Le et al., 20 86))dentity-like weight matrix
is learned. At higher pruning percentages, these diagtealsme more pronounced.

6.2.4 Generalizability of my results

To test the generalizability of my results, | also test mynpng approach on a smaller, non-
state-of-the-art NMT model trained on the WIT3 Viethamé&seiish dataset (Cettolo et al.,
2015), which consists of 133,000 sentence pairs. This meddfectively a scaled-down
version of the state-of-the-art model in Chapter 4 (Luongl.e2015b), with fewer layers,
smaller vocabulary size, smaller hidden layer size, nomtate mechanism, and about 11%
as many parameters in total. It achieves a BLEU score of h@hevalidation set.

Although this model and its training set are on a differemesto my main model, and
the language pair is different, | found very similar resulEor this model, it is possible
to prune 60% of parameters with no immediate performance kred with retraining it is
possible to prune 90%, and regain original performance. Minrobservations from Sec-
tion 6.2.3 are also replicated; in particular, class-bfndning is most successful, "sparse
from the beginning' models are less successful than prunédretrained models, and |
observe the same patterns as seen in Figure 6.11.

6.2.5 Conclusion

| have shown that weight pruning with retraining is a highffigetive method of compres-
sion and regularization on a state-of-the-art NMT systeammressing the model to 20% of
its size with no loss of performance. Though | am the rst tplgrompression techniques
to NMT, | obtain a similar degree of compression to other entrrwork on compressing
state-of-the-art deep neural networks, with an approaahishsimpler than most. | have
found that the absolute size of parameters is of primary mapee when choosing which
to prune, leading to an approach that is extremely simplefdement, and can be applied
to any neural network. Lastly, | have gained insight intodistribution of redundancy in
the NMT architecture.
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In terms of future work, includingeveraliterations of pruning and retraining would
likely improve the compression and performance of my prgmmethod. If possible it
would be highly valuable to exploit the sparsity of the prdimeodels to speed up training
and runtime, perhaps through sparse matrix represensagioth multiplications (see Sec-
tion 6.2.2). Though | have found magnitude-based pruniretéorm very well, it would
be instructive to revisit the original claim that other pinopnmethods (for example Optimal
Brain Damage and Optimal Brain Surgery) are more princi@ed perform a comparative
study.

6.3 Future Outlook

In this section, | will highlight potential research direets and speculate on the future
of NMT by rst extending on ideas | have just discussed, mtdsk learning and model

compression. After that, | will talk about two other futurernds: (a) training sequence
models beside maximum-likelihood estimation and (b) namihg coherence as well as
style in translation.

6.3.1 Multi-task and Semi/Un-supervised Learning

In Section 6.1, | have assessed the feasibility of utilimtiger tasks, such as parsing, im-
age caption generation, and unsupervised learning, toowepiranslation. The positive
gains in the translation quality that we achieved furtherfoece my belief that multi-task
learning is an important direction for the future of NMT (aexden for Arti cial General
Intelligence). In the short-term future, as successorsitonrk, there have been fruitful
results in buildingmultilingual NMT systems (Zoph and Knight, 2016; Firat et al., 2016;
Johnson et al., 2016; Ha et al., 2016) in which translatiomsultiple languages are viewed
as different tasks. A nice by-product of such a system is thiéyato do zero-shot learn-
ing which has been demonstrated convincingly by Johnson €@l6). In that work, the
authors built a single model that can do translation for 1@jlege pairs using the same

9Some of the content of this section is based on the NMT tutibvé |, Kyunghuyn Cho, and Christopher
D. Manning gave at ACL 201kttps://sites.google.com/site/acl16nmt/ .
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sub-word vocabulary. Even more exciting, they can traasl@asonably well for unseen
language pairs at training time without using a pivot largguelUltimately, as what human
does, it will be tremendously powerful if we can succesgfldarn from the data of all
(sequence-to-sequence) tasks and construct a single tmadelan accomplish multiple
goals, such as speech recognition and translation, at the 8me. In this way, an intel-
ligent system can take speech, for example in English, as #upd produce on the y a
text translation, say in Urdu or Vietnamese, even thoughstirever seen any training data
between the speech and text of that language pair.

Semi-superviselibarning will also play a crucial role in the future of NMT s¢gms.
When mentioning about semi-supervised learning, | alsdyirtige importance of unsu-
pervised learning: any successful unsupervised learniodemin text should provide a
general form of language understanding that will be berad to downstream tasks that
require supervision, e.g., (Dai and Le, 2015). In SectidnZ.l have also shown prelimi-
nary performance gains in translation by having auto-eerodr skip-thought training as
unsupervised tasks in a multi-task setting. Such modelgkiewy can only utilize a small
amount of monolingual text, the kind of data that exists iat\g@uantity. Human, in con-
trast, has the ability to learn a new language by rst havimgne form of supervision such
as a language teacher or a grammar book; afterwards, thesyrogly read books or mate-
rial in that foreign language and keep improving their ttatisn capabilities. Future NMT
systems should be able to do so.

In fact, recent approachesdauwal translationmodels (Sennrich et al., 2016a; Xia et al.,
2016), which involve two back-and-forth translation madeétween a language pair, are
heading towards that direction. In the former work, the atglsimply use a reverse trans-
lation model to generate more parallel training data froetdrget-language monolingual
text, which helps alleviating over- tting. The latter workcloser to what | envision for the
future: starting with 10% of the bilingual data, the authivaesn both source-to-target and
target-to-source models; then, through a Reinforcemeatriieg setting on monolingual
data only, the two models help each other in improving thhamglation abilities. Using this
approach, the dual-translation system can achieve cotpgrarformance to NMT mod-
els trained on the full bilingual data. However, the applhoamot yet scaled well to utilize
the full monolingual data. Ideally, we would want to keeprfeag from monolingual data
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forever and getting better and better over time.

6.3.2 Model Compression and Knowledge Distillation

As we have discussed, the needfimodel compressiois inevitable as mobile devices be-
come ubiquitous nowadays and we want to make NMT models gnaiigh to t onto the
device. In Section 6.2, | found it rather surprising thatplaeameters of NMT models can
be pruned up to 80% without any loss in performance as longadsain the pruned models.
What | did, however, was only a proof-of-concept to show thate is a great redundancy
in the parameter space of NMT models and it can be made snalleonto mobile de-
vices. | believe the future for NMT (and deep learning modelgeneral) will involve
dealing ef ciently with low-precision arithmetics (Couabiaux et al., 2015; Gupta et al.,
2015b) and sparse models.

In parallel, the idea oknowledge distillatior(Hinton et al., 2015), also proves to be
of great importance in deep learning. What happens in pedioften, one can improve
the system performance (sometimes by quite a lot) simplydigihg multiple models, an
ensemble, and then averaging the predictions. Such a prisogsite tedious and computa-
tionally expensive to deploy to users. The idea of distdlatrises to address this problem
by building a single neural network that can mimic the bebawf an ensemble. This turns
out to work very well for NMT as demonstrated by Kim and Rusbl(@). Instead of trying
to mimic an ensemble of models, they try build a smakguden} network to learn from a
larger teachej network. This not only speeds up inference time but alsceaels the goal
of making NMT models smaller. Additionally, they appliecethbsolute-value pruning
technique that | proposed in Section 6.2 to achieve furthedehcompression for NMT,
which is quite remarkable. | am looking forward to see knalgke distillation applied to
not just one but over a variety of NMT models.

6.3.3 Beyond Maximum Likelihood Estimation

So far, the standard maximum likelihood estimation (MLEpm@ach to optimizing the
conditional probability of a target sentence given a sow®stence has served us well
in training NMT models. However, as NMT has reached a newstolge of completely



CHAPTER 6. THE FUTURE OF NMT 121

surpassing phrase-based models and being used in comhsgstems (Wu et al., 2016;
Crego et al., 2016), it is time to look beyond MLE to furthevadce NMT. Researchers
have previously and recently started to identifying majaiipems of using MLE to train
sequence models. The rst one is teeposure biaproblem (Bengio et al., 2015) which
arose due to mismatch between training and inference:iairtgetime, correct words from
the data distribution, are always provided; whereas atemiee time, the most likely words
predicted by the model are used as input to the next time $tepsecond one is tHess-
evaluation mismatcproblem (Ranzato et al., 2016), due to the fact that we tradets
with word-level loss, e.g., the cross-entropy objectivé, dévaluate the nal performance
using sequence-level discrete metrics such as BLEU (Paigtel., 2002).

This is a research direction that | nd extremely fascingtas evidenced by a diverse
set of recent work trying to address the aforementionedlenaf. Here, | try to high-
light some of the work though readers will notice that theegahideas revolve around
incorporating inference into training and maximizing tleggence-wise global loss. For
example, Bengio et al. (2015) address the exposure biasepnalsing ascheduled sam-
pling approach that bridges the gap between training and inferleyalternating between
using the correct words as input and words predicted by theehturing training; the opti-
mization procedure remains to be MLE. Ranzato et al. (20i&)rporates sequence-level
metrics, such as BLEU for translation and ROUGE for sumnaéion, through theein-
forcement learningRL) framework, speci cally using the REINFORCE, policy gra-
dient algorithm (Williams, 1992). Since RL requires drawing $d@s from the model
distribution, this approach does address the exposurgbddéem as well. There is, how-
ever, a challenge in applying RL to languages, that is, theraspace, or the vocabulary,
is too large. As such, to speed up learning, the authors aiZ&ta et al., 2016) propose
an approach, named MIXER, that combines both MLE and RL itiginMLE is used for
pretraining the network initially as well as to help RL pregumore stable sequences. Al-
ternatively, Bahdanau et al. (2016a) usedhtor-critic approach to nd better actions, i.e.,
words given a context, which leads to faster convergencdatidr nal performance.

There are also many related approaches for sequence-taughg. For example,
Shen et al. (2016) employ tminimum risk trainingramework to minimize the expected
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(non-differentiable) loss on the training data, which hapgpto be the same as the pol-
icy gradient loss. However, there are differences in howdiates are sampled and how
the expected loss is approximated using a renormalizedhkdison over the candidates
only. Norouzi et al. (2016) offer insights on how MLE and RLj@ttives are related as
well as propose a hybrid approach between the two, namelsird-augmented MLEhat

is computationally ef cient and avoids the aforementiorfettks”, such as pretraining,
actor-critic, and variance reduction, to make RL work. \W/Iall of the above work incor-
porates stochastic inference to training, Wiseman and R&16) consider adding deter-
ministic inference to training througheam-search optimizationThe authors utilize the
max-margin framework and substitute the RNN locally-ndireal scores with the par-
tial sentence-level BLEU scores. This approach has seadvaintages in that it preserves
the proven model architecture of seq2seq and at the sameadtdresses the well-known
label-biasproblem (Lafferty et al., 2001) which arises whenever theally-normalized
scores from RNNSs are used.

As | mentioned, this is an exciting research area with maffgréint approaches. The
list does not simply stop there and it remains to be seen wdpgiioaches will stand the
test of time, | think an important big picture here is that we @ming closer to optimizing
arbitrary objectives. Among the different choices, | hapberenceindstyle which | will
talk about next, will be featured some day.

6.3.4 Translation with Coherence and Style

Up until now, translation only happens at thentencdevel: a paragraph or a document
is split into multiple sentences, each of which is translateisolation. This is, unfortu-
nately, neither how a human translates nor the way the mganiexts is derived. Behind

a sequence of sentences, there is often a high-level, saegttomplex, organization of
thoughts, thediscourse structurdMann and Thompson, 1988) which captures relation-
ships among different text units such as comparison, edaioor, and evidence. Profes-
sional translators do not translate, for example a 4-sest@aragraph, using the exact
number of sentences in the source; they can use more or lgssnses depending on their
understanding of the source text and how thoughts are pesb@mthe target language.
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Early work (Marcu et al., 2000) hinted that modeling dissmustructure is useful for ma-
chine translation, especially for distant language paichsas English and Japanese.

The big picture here, in my opinion, is that future NMT sysseshould handleoher-
enceandstyle the two fundamental elements present in professionaatians, on which
current machine translation systems are missing. Cohemmeans translation beyond the
sentence level and to achieve that, one might need to cansideistic insights such as
discourse structure analysis and coreference solutiah,like how the attention model
in NMT was motivated by word alignment notion in machine siation. Architecture-
wise, | think models that can handle well very long sequesces asierarchical models
will be useful in maintaining translation coherence. Irstpaper (Li et al., 2015), | and
other colleagues demonstrated the effectiveness of blécal models in constructing rep-
resentations for long-text sequences such as paragraghgoanoments in an autoencoder
setting. Besides, hierarchical models have also provarséfulness in other areas such as
speech recognition (Chan et al., 2016) and dialogue sygt®erban et al., 2016).

Maintaining style is an even harder problem. Not only doesttanslation system
need to ensure coherence but it also has to recognize areh\@dke tone of the source
text, e.g., whether this is a formal text in business setting the text is informal and
has some sense of humor, satire, etc. Accomplishing thiseguire deep understanding
of languages such as recognizing idiomatic phrases, scates] slang usages, and even
implicit cultural referents. | believe insights from thesarof dialogue systems will bene t
style translation as we start seeing work in adding persmatain to conversation dialogues
(Li et al., 2016; Al-Rfou et al., 2016).

Lastly, to make our progress measurable, evaluation datasd proper automatic met-
rics will be tremendously useful as how BLEU (Papineni et2002) has helped advanced
the eld of machine translation. The authors in (Sim Smitlalket 2015) have put up a
proposal for a coherence corpus in machine translation analboking forward to many
more of such resources in the future.



Chapter 7
Conclusion

In this dissertation, my goal is to present to the readerefalhe essence of Neural Ma-
chine Translation, through which | discuss how | have cbaoted to the development of
NMT since its birth as a fringe research project in 2014 taviédl-established status as a
mainstream approach for machine translation includingroensial deployments in 2016.
Chapter 1 -ntroductionwalks the readers through the history and fundamentals ef ma
chine translation together with drawbacks of existing apphes, leading to the develop-
ment of NMT. In Chapter 2 Backgroundl provide readers with the necessary knowledge
to understand and build a vanilla NMT, which covers detaillanguage models and re-
current neural networks, the basic building block for NM&v&ral key highlights in this
chapter include (a) a complete derivation for the gradiehtsSTM and its backpropaga-
tion algorithmin Section 2.2.2 and (b) the forward and bacgpgation steps of multi-layer
NMT models in Algorithm 3 and 4.

Chapter 3 -Copy Mechanisnstarts discussing my contribution. When | was devel-
oping the work for this chapter in 2014, NMT had just startathwhe seminal work of
Sutskever et al. (2014). Despite its potential, NMT modelghat time had not been able
to surpass phrase-based models and suffered from thediviateabulary problem. Specif-
ically, NMT models often use a singkeunk > token to represent all other words not in
its vocabulary, but do not know how to handle them at traisiatime. My proposed
copy mechanisms provide simple yet effective ways for &l@vg that problem. By learn-
ing to align the target unk > with words on the source through additional annotations
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to the training data (no need to modify the models, i.e. tingaany NMT models as a
black box), | can post-process target unknown translationsh easier through word dic-
tionary translation and identity copy of source words. Tdyiproach provides a further
lift to the performance of the vanilla NMT model, allowing rfeg the rst time to build
an English-French NMT system that achieves state-of-thpesformance. Looking back,
one can think of the way | track target unknown words as a speese of the attention
mechanism. Still, the idea of copy mechanism remains to b&ilantil now, especially
when adapting seg2seq models to new tasks such as text sinatoar (Gu et al., 2016;
Glulgehre et al., 2016) and semantic parsing (Jia and |.20106).

Chapter 4 -Attention Mechanisnncludes my deep exploration of what is now the de
facto standard in NMT, the attention mechanism, which impsotranslation quality for
long sentences. At the time of my work, there has been littldysin useful architectures
for attention-based NMT apart from the introduction of titeation mechanism to NMT in
the seminal paper of Bahdanau et al. (2015). My work expearisn@ith various variants
of the attention mechanism and analyzes the effects ofrdifteattentional components.
One of the key highlights of my work is the introduction of anple bilinear attentional
function to compare source and target states which has newwilely adopted by many
people, such as Harvard NLRand across different domains such as reading comprehen-
sion (Chen et al., 2016) and dependency parsing (Dozat amdikigy 2016). | have also
introduced a local attention mechanism that only focusesdifferent subset of the source
sentence at each time step. While | have demonstrated thetiefness of the local at-
tention mechanism on translation, | wish that | could hagte@ it over tasks that involve
very long sequences which local attention was designe®ieerall, the result of this work
is a new state-of-the-art NMT system for English-Germanaadér language pair than
English-French, which further convinces people on the sapsy of NMT. My follow-up
paper (Luong and Manning, 2015) on applying these atteritamsed models to theansfer
learningandlow-resourcesettings for TED talk translation has resulted in stat¢hefart
systems for English-German and English-Viethnamese @#osl Lately, there have been
trends to incorporate insights from the SMT community, biytéhe idea of source cover-
age and IBM alignment models (Cohn et al., 2016; Tu et al.6201

https://github.com/harvardnlp/seq2seq-attn
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Chapter 5 -Hybrid Modelscan be viewed as my continuing effort to completely solve
the rare word problem in NMT which was introduced in Chaptein3tead of having sep-
arate components to perform data annotation, train NMT tspdad post-process, | build
a single model that handles unlimited vocabulary. Motnagtby the proven word-level
seq2seq architecture for NMT and the exibility of charaegbased models in handling
complex and unknown words, | propose hybrid models thaisted@ mostly at the word
level and consult the character components for rare worlys ©he twofold advantage of
such a hybrid approach is that it is much faster and easiexitothan character-based ones;
at the same time, it never produces unknown words as in tleeafagord-based models.
This advance leads us to conquer (with state-of-the-afopeance) another challenging
language pair, English-Czech, in which the target is a kighlected language with a
complex vocabulary. | have also demonstrated an impregsivefrom 2.1 to 11.4 BLEU
points over models that already handle unknown words. Ricdmere is a new trend of
translating at purely subword level (Sennrich et al., 2Q18b et al., 2016) in which a seg-
mentation algorithm is run over the data and a black-box NMddeth is used in a similar
spirit to the copy mechanism. While that new trend works weeyl for NMT, | think that
the hybrid models that | have proposed will remain usefuhiew applications where seg-
mentation of units, such as predicates in semantic pansimgt desirable or when there is
a need to incorporate more complex structures such as semgmesentations (instead of
sequences of characters) for unknown entities to existiatgms.

Chapter 6 -NMT Futureexamines two questions that | think are important to the fu-
ture of NMT: whether other tasks can be utilized to improeasiation and whether NMT
models can be compressed. The former question is imporenduse of the fact that
the rst NMT systems only utilize parallel corpora despite @bundant amount of avail-
able data from monolingual and multi-lingual corpora aslwsldata from related tasks.
To answer, | demonstrate that translation quality can beorgd with data from pars-
ing, image caption generation, and unsupervised leartygwork motivates subsequent
papers in building multi-lingual NMT models (Zoph and KnigB016; Firat et al., 2016;
Johnson et al., 2016; Ha et al., 2016). The latter questisasfrom the indispensable role
of mobile devices in society nowadays and the fact that statbe-art NMT models are
beyond the storage capacity of existing mobile gadgetsh ifihple pruning schemes, my
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results show that the parameters of NMT models can be prum&nl&@0% without any loss
in performance as long as pruned models are retrained. Guésework (Kim and Rush,
2016) combines our proposed pruning approach with knoveetigtillation to obtain a
further gain in model compression. Beside the aforemeatdajuestions, in Section 6.3, |
cover in-depth the existing research landscape, hightigtential research directions, and
speculate on future elements needed to further advance NMT.

Lastly, | am fortunate to have gone through an exciting jeyrim developing Neural
Machine Translation since its early days. | hope that thsseltation will provide use-
ful background and inspiration for future research in bagdnuch more advanced NMT
models, through which | expect the babel sh to become atyeadiry soon!
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