
JSesh Demonstration File

Serge Rosmorduc

2020

This file1 demonstrates Jsesh capabilities as far as the Manuel de Codage is

concerned. It contains tests for the usual constructs. It is also a tutorial
about the Manuel de Codage.

Jsesh is a work in progress.

Encoding hieroglyphic texts, tips and tricks

Before describing the Manuel de codage itself, I'd like to make a point or two
about how one should encode a hieroglyphic text.

Typically, you have a source, which might be a) a printed source, with

typeset hieroglyphs, b) a photograph or an acurate facsimile of the original
text, or c) handwritten hieroglyph from an egyptological publication (for

instance, the Urkunden).

You must decide how faithfull to the original you must be, and it's not an
easy question. The first point is that you can be sure that your Manuel de

Codage text can't be a facsimile, so, one way or another, it will betray the
original. If the text is ultimately a hieratic text, you are already creating

something completely different anyway.

Now, when you have a sign, should you look for the most precise variant for

it, or use a somehow standardised one ? To answer this, you should wonder
if this variant is relevant, in the text, and in the use you intend to make of it.

For instance, in the Kanaïs texts by Sethi the 1st2, the first person pronoun

uses many variants of A40 (). If you intend the text to be for grammatical
study, it's not very relevant. If you wonder whether it's a free play to add

diversity to the text, then you may take the time to use [the] code [of] the
variants. As a rule, if you are a beginner in Egyptian, I'd advise you to

encode the "standard" sign, as it will force you to read the text, not to copy
signs. The problem you have when you want to be very accurate is that you

1 The original file, named A_demonstration_of_the_mdc.gly is located in the texts folder of

the JSesh main folder (all notes are from the author of the present PDF).
2 See file Sethy I Kanais inscription.gly in the same folder.

2

will find many cases of variants which have no encoding anyway.

When your source is an handwritten version of a text, like in the Urkunden,
beware of one point: unless a sign is very particular, egyptologists will

usually draw their glyphs in the easiest way. That means, for instance, they

will use V23A () instead of (V22) which is the normal hieroglyphic

sign. You must understand that and, when a sign selection is simply caused
by the individual hand of the author, render it with the "standard" sign. On

the other hand, when the author has drawn a very specific sign form, this
demands more work.

Encoding hieratic texts

The above rule is even stronger for hieratic texts. There is no point in making

a distinction between and , as both are rendered the same in

hieratic!

Now, there are a number of peculiarities of hieratic which deserve more care.
Those have been pinpointed by sir Alan Gardiner in his article "The

Transcription of New Kingdom Hieratic", JEA 15 (1929), p. 48-55. The

rendering of hieratic texts should hint at the way the original signs are
placed, in order to allow the reader to understand the reason for the

rendering, and to go back to the original when necessary.

JSesh includes a number of signs which are usefull for rendering hieratic
texts:

 (Ff1) a sign particular to Ramesside texts, which serves as a kind

of "wildcard". It is not the same as Z5 ().

 (Ff100) a non-standard sign, "dot space filler". Use it to render

the various dots a scribe may use, when they are not a ponctuation.

 (Ff101) a non standard sign, horizontal space filler. Use it to

render various meaningless horizontal sign the scribe may use

to fill voids.

3

JSesh includes also specific signs for numbers in hieratic texts. In those

texts, the "determinative" is often smaller than the "digit" . Careless

rendering might cause to be read hrw 3, whereas the original has

, which is clearly hrw 2.

Description of the Manuel de codage

The Manuel de codage is a system for describing hieroglyphic texts in ASCII

characters. It's the result of the work of an international working group, and
it's described in: J. Buurman, N. Grimal, M. Hainsworth, J. Hallof, D. van der

Plas, Inventaire des signes hiéroglyphiques en vue de leur saisie
informatique, Paris, 1988 (first ed. 1984).

The Manuel was inspired by a software called Glyph, by J. Buurman ; the

first versions of Glyph can be traced back to the early 70s.

Most hieroglyphic editors use a more or less modified version of the Manuel,
notable modifications have been proposed in 1994 by H. van den Berg for

WinGlyph.

In the Pisa 2002 Table ronde Informatique et Égyptologie, M.-J. Nederhoff

has proposed a very interesting Revised Encoding System, which addresses
some of the Manuel shortcomings. We plan to take it into account later on.

Simple Manuel de codage codes

The basic principle of the Manuel is that a sign is described by its code in

Gardiner's fonts. For example, is "A1" and is "G5".

Variant signs (those with a "*" in Gardiner's list) are indicated by uppercase

letters after the code. For instance, is "A14A", vs. which is "A14".

A number of signs can also be described by their phonetic value. For

instance, can be coded "b".

4

The codes for the egyptian consonnants are the following:

For uniliteral signs, there are two special codes for some frequent variants:

 is coded "w", and is coded "W"

 is coded "m", and is coded "M"

 is coded "n", and is coded "N"

To these codes, the manuel adds also two groups:

"nTrw" for

"nn" for

Grouping of signs

Grouping hieroglyphs is done with a few simple operators:

"-" separates cadrats. For instance, is coded "G41-A"

":" stack groups. For instance, is coded "p:n"

"*" group signs on the same level in a cadrat.

5

For instance, is coded "p*t:pt"

More complex groups can be built using parenthesis:

pA-A-N16:N23*Z1-n:(x:t)*U30-xAst:t*Z1

Special signs

A cadrat-long space is coded "..":

 A-..-A-

A half-cadrat-long space is coded ".":

 A-.-A-

Black punctuation point is coded "O" ; is O:.

Red punctuation point is coded "o" ; is o:.

Unknown codes

When JSesh doesn't know a sign, it will replace it in its display by its code,
e.g.:

A9991-n:A9991*A1 gives

6

Shading

When nothing is visible under a shading, you can use the following codes:

 "//" for cadrat-size shading :

 "/" for quarter shading :

 "v/" for vertical shading :

 "h/" for horizontal shading :

Those are "real" signs, which can be combined with others: p:h/ gives .

They are seldom of use, however, as the method below is much more

practical.

For shading parts of a cadrat, use "#", followed by the figures 1,2,3 or 4.

'1' fills the start-top corner of the cadrat: p*t:pt#1 gives

'2' fills the end-top corner of the cadrat: p*t:pt#2 gives

'3' fills the start-bottom corner of the cadrat: p*t:pt#3 gives

'4' fills the end-bottom corner of the cadrat: p*t:pt#4 gives

These codes can be combined:

p*t:pt#13 gives

p*t:pt#14 gives

p*t:pt#1234 gives

For shading large parts of texts, use "#b" (shade begin) and "#e" (shade
end):

7

Zone shading:

i-W-bA:k-A1-#b-Xr:r-n:h:t-#e-xt:Z1

Sign overlapping

It's possible to combine signs using the operator "##". The result is not

always very good, though.

Example:
m##a-a##b-M3##M1-M1##M3

Note that the "official" operator for this is "#", but I suggest you use "##"
instead, for"#" has been much over abused (it means too many things). In

any case, JSesh will transform all "#" into "##" when saving !

Red zones

A zone of text can be written in red with "$r" (begin red) and $b (begin
black) operators.

$r-HAt:a_-m_-s-b-sbA-A-i-i-t:Y1-arq:Z1_-m_-anx-n:x-Y1v_-$b-mt:t-r:W-

Dba-Dba-Hw-A2-Z3_-n_-W-DA-A-Y1v_-

Individual signs can be written in red by writing "\red" after them.

This is a JSesh specificity.

Example:
p*p:p\red*p-

8

Sign Modifications

Inversion, rotation

A sign can be reversed by writing "\” after it: "A1\” is

In JSesh, you can turn signs by any angle, using \R and the angle in degrees

anx\R30-G5-G7

A1-A\R90-A\R180-A\R270-A\R360-

These two features can be combined:

A1-A\\R90-A\\R180-A\\R270-A\-

Note that the "\R" operator is non standard. It was proposed for Winglyph in
1994, but apparently not used. The original Manuel did not know about

rotations at all and most implementation use only 90° rotations, with two
operators:

\r + 1, 2, 3, 4: rotate 90, 180, 270 or 360°

\t + 1, 2, 3, 4: same, plus reverse.

A1\r1 -A1\r2 -A1\r3 -A1\r4 -

A1\t1 -A1\t2 -A1\t3 -A1\t4 -

9

Scaling

It's possible to scale a sign by writing "\” and a percentage.

The sign's base size will be modified accordingly:

A1-A1\80-A1\50-A1\20

The percentage can even be greater than 100:

t-t\80-t\200-t\400-t\1000-

Note that the sign is limited by the cadrat maximal size.

This operator wasn't in the 1988 format, but is widely used. This can be used

to customize the effect of scaling in cadrats. Let's consider the group ,
written "zA:zA*zA".

Notice that the upper is a bit too much larger than the others. We can

correct this with scaling:

zA\70:zA\70*zA\70-

In traditional typography, the sizes of fonts are ruled by a decrease of a

factor sqrt(2). This gives a nice visual effect, and you might try using these
factors:

A1-A1\70-A1\49-A1\35-A1\24

10

A stress test for effect combination: rotated scaled sign (any use ?)

rotation test with non-square sign:

Ignored signs
(JSesh extension)

As cadrats don't respect words boundaries, you might find yourself quoting a
word, or a text, which start in the middle of a cadrat. In JSesh, the "\i"

operator means that a sign is irrelevant. it will be drawn in very light gray,
simply for space filling.

M\i:p*t:pt

Wide signs and groups
(non standard extension)

In Late Egyptian texts, in particular hieratic texts, some groups can be very
wide. Often, they contain a hieroglyph which is very elongated, an lots of

smaller signs below it. The normal scaling rules would reduce the cadrat's

width, and give both a difficult to read and unfaithful rendering. Thus, JSesh
provides the operator "\I" (uppercase “i”). It says that the current sign can

have any width it likes.

without it: "m-xt:x\80*t\80*D54\80" gives

with it: "m-xt\I:x\80*t\80*D54\80" gives

The best results are obtained by combining this and scaling:

ir\200:r*t*W-ir\200:r*t*W

11

Grammatical codes

The manuel states that " " (space) after a sign means that this sign ends a

word, and that " " (two spaces) mark a sentence end. JSesh stores this
information along with the signs, but currently doesn't do anything with it.

As an alternative, after the WinGlyph practice, you can use underscores

instead of spaces.

 i-w-=f_-m_-p*t:pt_

12

Absolute sign positionning

JSesh borrows the syntax from MacScribe; the interpretation is made up
from scratch, though. A group made with the operator ** will use absolute

positioning. Each sign in such a group should be followed by a position of the
form {{x,y,s}} where:

 x is the distance of the sign to the left of the group
 y is the distance to the top of the group

 s is the scale of the group (as a percentage)

If nothing is specified, the default values are 0,0,100.

x and y are expressed in 1/1000 of the height of an (A1) sign:

stp{{0,0,100}}**n{{0,800,100}}**ra{{700,0,70}}

More fun with positioning:

A1{{200,20,100}}**T31\R50{{120,0,40}}

Important note: We previously used &&, which was in fact a mistake, as its

meaning in MacScribe is indeed quite different. We intend to correct this in a
future release (with a mecanism for compatibility). In future versions of

JSesh, the operator for explicit placement will be **.

Ligatures

A ligature system was introduced quite soon, in the form of a special group.
This is a "standard" extension to the Manuel de codage. JSesh knows about a

number of special groups. The operator "&" means that signs are to be
grouped together in a special way.

G1&X1-stp&n&ra-D&d-Ax&x-t&w&t-
gives:

13

Complex ligatures

JSesh (from version 2 alpha 20 and later) has a mecanism inspired from

MacScribe's syntax for ligaturing a sign and a complex group. To tell it fast,
each sign has up to two rectangular zones in which a group can be inserted.

One zone is "before" the sign, the other one is "after" the sign.

Example: in and , the groups and are inserted in front (first

area) of . This is written:

 (Z1:Z1*Z1)^^^nTr and X2^^^nTr

It works well for most birds:

The other zone is "after sign":

is written: Ax&&&x-..-A&&&t-..-w&&&t-..-ns&&&(mSa*Z3)-..-D&&&(d:d:t)

Both operators can be combined: , t^^^w&&&t

When JSesh has no explicit data about a sign, it tries to guess. Note that in

future versions of JSesh, the &&& and ^^^ operators will be replaced by &&
and ^^.

User Modifiers

To allow extensions of the manuel, JSesh can parse all modifiers after a sign,

if they respect this rule:

• a modifier is introduced by "\”
• it contains a sequence of letters, which is its name, and a sequence

of digits, which is its value.

 A1\IdontMeanAthing\number1000

14

Cartouches, Serekh, etc..

Cartouches are written between "-<-" and "->-".

Cartouche
 sw:t-bit:t-<-ra-mn:n-xpr->-anx-DA-s

<-sw-t:n-G7-N41:t*B1-G7-t:A-A51-s-y:B1-G7->

Serekh
<S-E1:D40-mAat-mr->

Hout-sign

<H-Z3-A19->

Enclosure (not yet drawn, but correctly read)

<F-bA-A-y:r-i-i-Aa18-Z1-mr:r-W:t-A2-r-D:t:N17->

Some parts of the cartouche may be absent, or may be drawn in a different

place. In this case, the letter-code (if any) should be lowercase. A figure
indicates what should be drawn ; the available constructs are:

Cartouche: nothing = 0 ; no-knot: 1 ; knot: 2

<1-ra-mn:n-xpr-1>

15

<1-ra-mn:n-xpr-0>-!?800<1-ra-mn:n-xpr-0>!?800<2-ra-mn:n-xpr-1>

Hout-sign:

0: nothing, 1: no square, 2: square in the bottom; 3: square in the top.

<h0-Z3-A19-h3>

<h3-nTr-h1>

<h2-nTr-h2>

Serekh

<S-E1:D40-mAat-mr->

<s2-E1:D40-mAat-mr-1>

16

Alphabetic Text

alphabetic text is introduced by "+" followed by:

 l for latin script

 i for italic script

 b for bold script

 t for translitteration (anx wDA snb)

 c for coptic script (not yet)

 h for hebrew script (not yet)

 g for greek script (not yet)

 r for cyrillic script (not yet)

 + for comments (comments are invisible)

 s to revert to hieroglyphs

Notes

• The Manual says nothing about the encoding of coptic, greek, hebrew
or cyrillic !

• You should go back to the hieroglyphic mode (+s) before the end of

the line

• Translitteration is typed using the encoding explained above for
hieroglyphs.

• Uppercase translitteration letters are supposed to be coded like this:

"^" + translitteration code. (JSesh doesn't support this yet).

"^pAnb" for "PAnb".

17

Definitely avoid the direct use of codes supported by your particular font
(except probably when the unicode standard for translitteration appears).

Example:

+l this is a text +iwith italics and +s nTr-md-Z3A++ and a comment+s-!

gives

In Jsesh, you can easily include a + sign in a latin text ; simply write \+ (this
is not in the Manuel).

You can write text in cartouches:

sw:t-bit:t-<-+tmn-xpr-ra+s->-anx-DA-s

Superscript (line numbers)

Superscript is done by writing "|your text-" . e.g:

|R(1),[1.1]-z:A1*Z1-p-Z7-wn:n-i-n:p*Z7-E15-x:D43-Z7-Y1:n-A1-r:n-f-

18

Line skips

Line skips are indicated by "-!".

If a line skip is of the form by "-!=number%", a space of number percent

times the normal skip is skipped.

e.g. four time the normal skip:

-!=400%

next line

New pages

new page are indicated by -!!

Horizontal lines

A line can be drawn with the construct "{lnumber,number}". The first

number is the start position, the second is the ending position. The unit is
1/200th of the width of a sign. The letter can be either 'l' or "L", for a

thin or bold line:

Tabulation

Tabulation is indicated by "?number"; the number is expressed in 1/200th of

the size of a sign.

19

Example: to align our examples, we use "?800":

?800+lan example

an example

the sign should appear after the below:

?400-A1-?100-A2-

20

Ecdotic codes

Added

 -[&-i-w-r:a-ra-m-p*t:pt-&]

Superfluous

 -[{-i-w-r:a-ra-m-p*t:pt-}]

Erased

 -[[-i-w-r:a-ra-m-p*t:pt-]]

Previously readable

 -["-i-w-r:a-ra-m-p*t:pt-"]

Added by scribe

 -['-i-w-r:a-ra-m-p*t:pt-']

Minor editor addition

(non standard. Initially in MacScribe)

 -[(-i-w-r:a-ra-m-p*t:pt-)]

21

Dubious reading
(non standard. Initially in MacScribe)

-[?-i-w-r:a-ra-m-p*t:pt-?]

The original Manuel suggested that philological indications worked as
parenthesis, but this doesn't correspond to actual typographical practices.

Hence, WinGlyph considers these are simple signs, which means that you

don't need to match them.

JSesh supports both this interpretation and the original one (which was
supported in tksesh).

Currently, it loads any file with a ".gly" extension using the WinGlyph rules,

and any file with a ".hie" extension using tksesh's rules.

In cadrat:

p*[[*t*]]:pt_-p*[[*t:pt-]]

Support for deprecated Manuel practices

JSesh is able to read texts that don't follow the exact Manuel de codage. For

instance, it's quite forgiving about spaces. However, when saving a text,
JSesh will write it in a very normalized form, to ensure a maximal readability.

Conversion from .gly format to PDF (CC BY-SA 2.0 FR) Janvier 2022 - Didier Morandi

https://www.shpylgoreih.fr

